Единство организма и среды icon

Единство организма и среды



НазваниеЕдинство организма и среды
страница1/10
Дата конвертации07.09.2012
Размер2.16 Mb.
ТипДокументы
  1   2   3   4   5   6   7   8   9   10
1. /Анатомия и физиология человека.docЕдинство организма и среды

  1. Единство организма и среды. Функции целостного организма осуществляются только при тесном взаимодействии со средой. Организм реагирует на среду и использует ее факторы для своего существования и развития. Основоположник отечественной физио­логии И. М. Сеченов в научное определение организма включал и среду, влияющую на него. Физиология целостного организма изучает не только внутренние механизмы регуляции физиологи­ческих процессов, но и механизмы, обеспечивающие взаимодейст­вие и единство организма с окружающей средой. Гомеостаа и регуляция функций в организме. Все процессы жизнедеятельности организма могут осуществляться только при условии сохранения относительного постоянства внутренней среды организма. К внутренней среде организма относят кровь, лимфу и тканевую жидкость, с которой клетки непосредственно сопри­касаются. Способность сохранять постоянство химического состава и фи­зико-химических свойств внутренней среды называют гомеостазом. Это постоянство поддерживается непрерывной работой систем ор­ганов кровообращения, дыхания, пищеварения, выделения и др., выделением в кровь биологически активных химических веществ, обеспечивающих взаимодействие клеток и органов. В организме непрерывно происходят процессы саморегуляции физиологических функций, создающие необходимые для существо­вания организма условия. Саморегуляция — свойство биологических систем устанавливать и поддерживать на определенном, относительно постоянном уров­не те или иные физиологические или другие биологические пока­затели. С помощью механизма саморегуляции у человека поддержи­вается относительно постоянный уровень кровяного давления, температуры тела, физико-химических свойств крови и др. Одним из условий саморегуляции является обратная связь между регу­лируемым процессом и регулирующей системой, поступление ин­формации о конечном эффекте в центральные регулирующие ап­параты. Гуморальная (лат. Ьшпог —жидкость) регуляция —один из механизмов координации процессов жизнедеятельности в организ­ме, осуществляемой через жидкие среды организма (кровь, лим­фу, тканевую жидкость) с помощью биологически активных ве­ществ, выделяемых клетками, тканями и органами. Этот тип ре­гуляции является наиболее древним. В процессе эволюции по мере развития и усложнения организма в осуществлении взаимосвязи между отдельными его частями и в обеспечении всей его деятельности первостепенную роль начинает играть нервная регуляция, которая осуществляется нервной системой. Нервная система объединяет и связывает все клетки и органы в единое целое, изменяет и регулирует их деятельность, осущест­вляет связь организма с окружающей средой.
    Центральная нерв­ная система и ее ведущий отдел — кора больших полушарий го­ловного мозга, весьма тонко и точно воспринимая изменения окружающей среды, а также внутреннего состояния организма, своей деятельностью обеспечивают развитие и приспособление ор­ганизма к постоянно меняющимся условиям существования. Нерв­ный механизм регуляции более совершенен. Нервный и гуморальный механизмы регуляции взаимосвязаны. Активные химические вещества, образующиеся в организме, спо­собны оказывать свое воздействие и на нервные клетки, изменяя их функциональное состояние. Образование и поступление в кровь многих активных химических веществ находится, в свою очередь, под регулирующим влиянием нервной системы. В этой связи пра­вильнее говорить о единой нервно-гуморальной системе регуляции функций организма, создающей условия для взаимодействия от­дельных частей организма, связывающей их в единое целое и обе­спечивающей взаимодействие организма и среды. Понятие роста и развития. Процессы роста и развития явля­ются общебиологическими свойствами живой материи. Рост и раз­витие человека, начинающиеся с момента оплодотворения яйце­клетки, представляют собой непрерывный поступательный процесс, протекающий в течение всей его жизни. Процесс развития проте­кает скачкообразно, и разница между отдельными этапами, или периодами жизни, сводится не только к количественным, но и к качественным изменениям. Наличие возрастных особенностей в строении или деятельности тех или иных физиологических систем ни в коей мере не может являться свидетельством неполноценности организма ребенка на отдельных возрастных этапах. Именно комплексом подобных осо­бенностей характеризуется тот или другой возраст. Под развитием в широком смысле слова следует понимать процесс количественных и качественных изменений, происходящих в организме человека, приводящих к повышению уровней слож­ности организации и взаимодействия всех его систем. Развитие включает в себя три основных фактора: рост, дифференцировку органов и тканей, формообразование (приобретение организмом характерных, присущих ему форм). Они находятся между собой в тесной взаимосвязи и взаимозависимости. Одной из основных физиологических особенностей процесса развития, отличающей организм ребенка от организма взрослого, является рост, т. е. количественный процесс, характеризующийся непрерывным увеличением массы организма и сопровождающийся изменением числа его клеток или их размеров. В процессе роста увеличиваются число клеток, телесная масса и антропометрические показатели. В одних органах и тканях, та­ких, как кости, легкие, рост осуществляется преимущественно за счет увеличения числа клеток, в других (мышцы, нервная ткань) преобладают процессы увеличения размеров самих клеток. Такое определение процесса роста исключает те изменения массы и размеров тела, которые могут быть обусловлены жироотложени­ем или задержкой воды. Более точный показатель роста организ­ма— это повышение в нем общего количества белка и увеличение размеров костей. Закономерности онтогенетического развития. К важным зако­номерностям роста и развития детей относятся неравномерность и непрерывность роста и развития, гетерохрония и явления опере­жающего созревания жизненно важных функциональных систем. И. А. Аршавский сформулировал «энергетическое правило ске­летных мышц» в качестве основного фактора, позволяющего понять не только специфические особенности физиологических функций организма в различные возрастные периоды, но и зако­номерности индивидуального развития. Согласно его данным, осо­бенности энергетических процессов в различные возрастные пе­риоды, а также изменение и преобразование деятельности дыха­тельной и сердечно-сосудистой систем в процессе онтогенеза находятся в зависимости от соответствующего развития скелетной мускулатуры. А. А. Маркосян к общим законам индивидуального развития отнес и надежность биологической системы. Под надежностью биологической системы принято понимать такой уровень регулирования процессов в организме, когда обе­спечивается их оптимальное протекание с экстренной мобилиза­цией резервных возможностей и взаимозаменяемостью, гаранти­рующей приспособление к новым условиям, и с быстрым возвра­том к исходному состоянию. Согласно этой концепции, весь путь развития от зачатия до естественного конца проходит при нали­чии запаса жизненных возможностей. Эти резервные возможности обеспечивают развитие и оптимальное течение жизненных про­цессов при меняющихся условиях внешней среды. П. К. Анохин выдвинул учение о гетерохронии (неравномерное созревание функциональных систем) и вытекающее из него уче­ние о системогенезе. Согласно его представлениям, под функцио­нальной системой следует понимать широкое функциональное объединение различно локализованных структур на основе полу­чения конечного приспособительного эффекта, необходимого в данный момент (например, функциональная система акта сосания, функциональная система, обеспечивающая передвижение тела в пространстве, и др.). Функциональные системы созревают неравномерно, включают­ся поэтапно, сменяются, обеспечивая организму приспособление в различные периоды онтогенетического развития. Системогенез как общая закономерность развития особенно четко выявляется на стадии эмбрионального развития. Однако гетерохронное созревание, поэтапное включение и смена функ­циональных систем характерны и для других этапов индивиду­ального развития.




  1. Ткань - это исторически (филогенетически) сложившаяся система клеток и неклеточных структур, которая объединена общностью строения, происхождения и специализирована на выполнение определенной функции. Каждая ткань состоит из клеток и неклеточных структур. Эволюция тканей проходила в процессе исторического развития животных организмов под влияние внешней среды. Вначале возникли ткани внутренней среды и пограничные ткани. Последние, отделяя внутреннюю среду организма от внешней среды и выполняя в основном защитную функцию, также принимают участие в процессе обмена веществ между внешней средой и организмом. В дальнейшем возникли и получили развитие специальные виды тканей (мышечная и нервная). Поперечнополосатая мышечная ткань обеспечивает передвижение организма в пространстве, нервная ткань объединяет деятельность отдельных частей организма и уравновешивает организм с изменяющимися условиями внешней среды. Существует четыре вида тканей, а именно: 1) Эпителии, или пограничные ткани; 2) ткани внутренней среды; 3) мышечные ткани; 4) нервная ткань. Гистология - наука о развитии, строении и жизнедеятельности тканей животных организмов, в том числе и человека. Гистологию делят на три основных раздела: цитологию - учение о клетках и неклеточных структурах; общую гистологию - собственное учение о тканях; частную гистологию - учение о микроскопическом строении органов, их клеточном и тканевом составе. ЭПИТЕЛИИ (пограничные ткани) состоят из клеток, которые тесно прилежат друг к другу. Межклеточного вещества эпителии не содержат или содержат очень мало. По форме клеток различают эпителий плоский, кубический, призматический, бокаловидный и др. В зависимости от количества слоев клеток различают эпителий однослойный, многорядный, многослойный. В однослойном эпителии клетки расположены в один ряд. В однослойном эпителии различают в зависимости от формы клеток плоский эпителий, кубический и призматический. Если эпителиальные клетки имеют на своей поверхности подвижные реснички, то такой эпителий именуется мерцательным эпителием. Многорядный эпителий является усложненной формой однослойного. Основания всех его клеток расположены на одном уровне не базальной мембране, но свободной поверхности эпителиального покрова достигают не все клетки; часть клеток располагается между основаниями тех клеток, которые доходят до поверхности эпителиального покрова. В многослойном эпителии клетки расположены в несколько слоев, накладывающихся один на другой. Наименование многослойного эпителия зависит от формы клеток самого поверхностного слоя. Отсюда становятся понятными названия: многослойный плоский эпителий и многослойный призматический. Роль эпителиев неоднозначно. Если эпителий покрывает поверхность тела или выстилает полости внутренних органов, сообщающихся с наружной средой, то он выполняет защитную функцию и, кроме того, может участвовать в обмене веществ. Например, эпителий слизистой оболочки пищеварительного тракта выполняет защитную функцию и принимает участие в процессе всасывания поступающих из внешней среды питательных веществ. Часть эпителиев (или эпителиальных клеток) приобретает способность к образованию и выделению секрета. Такой эпителий получил название железистого эпителия, поскольку он составляет основную часть желез, вырабатывающих тот или иной секрет. Имеются одноклеточные железы (бокаловидная клетка).Эпителии могут служить материалом, из которого образуются видоизмененные структуры, такие, как ороговевший эпидермис кожи, волосы, ногти, эмаль зуба и др. Основные виды соединительных тканей Ткани внутренней среды характеризуются мощным развитием межклеточного (основного) вещества. К ним относятся кровь, лимфа, рыхлая соединительная ткань, ретикулярная ткань, жировая ткань, пигментная ткань, плотная соединительная ткань, эластическая ткань, хрящевая ткань, костная ткань и гладкая мышечная ткань. Они называются соединительными тканями, и это название дает представление о наиболее общей (соединительной) функции тканей внутренней среды. Так, рыхлая соединительная ткань располагается между специализированными тканями органов и объединяет их; Плотная оформленная соединительная ткань, из которой построены сухожилия, обеспечивает соединение мышц и костей; кровь обеспечивает доставку ко всем органам питательных веществ и кислорода и т.д. Источником происхождения тканей внутренней среды является мезенхима - эмбриональная соединительная ткань. Основное вещество мезенхимы не имеет специфические структуры, оно гомогенно, а клеточные элементы представлены клетками звездчатой и веретенообразной формы. Благодаря дифференцированию мезенхимы в процессе эмбрионального развития возникает все разнообразие соединительных тканей. Дифференцирование мезенхимы и образование в связи с этим различных видов тканей проходило в процессе эволюции животных организмов в трех основных направлениях: 1) часть тканей внутренней среды дифференцировалась в сторону выполнения трофической и защитной функций (кровь, лимфа); 2) другие ткани приобрели функцию опоры (соединительная, хрящевая и костная); 3) у третьих возникла функция сократимости (гладкая мышечная ткань). Соответственно функциональным особенностям упомянутые ткани имеют характерную для них структуру. а) Кровь человека представляет собой ткань с жидким межклеточным (основным) веществом (плазма крови), в котором находятся форменные элементы. Плазма имеет вид бесцветной, прозрачной, вязкой жидкости, в которой содержатся различные вещества, включая белки, углеводы, жиры и минеральные соли. К форменным элементам относятся красные кровяные тельца (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки. Эритроциты имеют форму двояковогнутых дисков. В процессе развития они утрачивают ядра, поэтому в сформированном виде ядер не имеют. В цитоплазме эритроцитов содержится особое вещество - гемоглобин, с помощью которого осуществляется перенос кислорода из легких в ткани и выведение из тканей углекислого газа. Лейкоциты имеют неодинаковое строение. Различают зернистые лейкоциты (гранулоциты) и незернистые лейкоциты (агранулоциты). Среди зернистых лейкоцитов различают эозинофильные, базофильные и нейтрофильные лейкоциты в зависимости от того, какими красителями (кислыми, щелочными или нейтральными) красится их зернистое вещество. Ядра у зернистых лейкоцитов имеют дольчатую форму, особенно хорошо выраженную у нейтрофильных лейкоцитов. К агранулоцитам относятся лимфоциты и моноциты. Лимфоциты имеют круглое ядро, окруженное тонкой каемкой цитоплазмы. Моноциты, самые крупные клетки крови, имеют округлое ядро, чаще бобовидной формы. Лейкоциты обладают способностью к амебоидному движению, поэтому они могут проникать через стенки капилляров и, таким образом, мигрировать из кровяного русла в окружающие ткани. Кроме того, лейкоциты обладают способностью к фагоцитозу, т.е. к поглощению и перевариванию бактерий и распадающихся тканевых частиц. Погибающие эритроциты крови также подвергаются фагоцитозу лейкоцитами. Фагоцитоз бактерий осуществляют нейтрофильные зернистые лейкоциты, а на долю лимфоцитов выпадает фагоцитоз отмирающих клеток. Фагоцитоз определяет защитную функцию крови. Кровяные пластинки представлены мельчайшими протоплазматическими комочками округлой, овальной или неправильной многоугольной формы. Они участвуют в свертывании крови. Количественный состав форменных элементов крови. В 1 мм куб. нормальной крови человека имеется 4500000 - 5000000 эритроцитов у женщин и 5000000 -5500000 эритроцитов у мужчин. В этом же объеме крови содержится 5000-8000 лейкоцитов. Количество их в крови может колебаться при разных физиологических состояниях организма. После приема пищи количество лейкоцитов в крови временно нарастает. Увеличение числа лейкоцитов происходит при воспалительных процессах, некоторых формах заболеваний крови и т.д. Различные виды лейкоцитов в нормальной крови находятся в следующем соотношении: нейтрофильных лейкоцитов 60-79%, эозинофильных лейкоцитов 2-4%, базофильных лейкоцитов 0,5-1%, лимфоцитов 20-25% и моноцитов 6-8% от общего числа лейкоцитов крови. Число кровяных пластинок равно в 1 мм куб. крови 150000-300000. Форменные элементы крови постоянно обновляются за счет гибели старых и развития новых. Исходной формой клеточных элементов крови являются гемоцитобласты, расположенные в красном костном мозге, селезенке и лимфатических узлах. При этом эритроциты и зернистые лейкоциты развиваются в красном костном мозге, а лимфоциты образуются в основном в селезенке и лимфатических узлах. Процесс развития эритроцитов из гемоцитобластов заключается в том, что в клетках накапливается гемоглобин; они утрачивают способность к размножению, теряют ядра и превращаются в безъядерные красные кровяные тельца. При образовании зернистых лейкоцитов в протоплазме гемоцитобластов появляется зернистость, приобретающая различный характер у эозинофильных, базофильных и нейтрофильных лейкоцитов. Круглые ядра гемоцитобластов превращаются в дольчатые ядра зрелых лейкоцитов. Лимфоциты образуются путем многократно деления гемоцитобластов на более мелкие клетки. Развитие форменных элементов крови проходит ряд сложных этапов, знание которых позволяет диагностировать различные заболевания крови, поскольку в основе последних очень часто находится повреждение механизмов гемопоэза (развития кровяных элементов). Кровяные пластинки образуются из особых гигантских клеток костного мозга. Форменные элементы крови как структуры высокоспециализированные утрачивают способность к размножению. Гибель старых элементов восполняется развитием новых, молодых. б) Лимфа, как и кровь, состоит из плазмы и форменных элементов. Однако в лимфе в отличие от крови форменных элементов (лейкоцитов) мало, а эритроциты отсутствуют. в) Рыхлая соединительная ткань состоит из клеток и межклеточного вещества. Межклеточное (основное) вещество этой ткани состоит из коллагеновых, эластических волокон и аморфного вещества, в которое включены эти волокна. Коллагеновые и находящиеся здесь в меньшем числе эластические волокна образуют войлокообразную массую В основном веществе расположены различные клетки, преимущественно фибробласты. Последние имеют форму неправильных многоугольников и снабжены отростками. Их ядро, обычно овальной формы, находится в середине клетки. Кроме фибробластов, здесь часто встречаются гистиоциты (блуждающие клетки в покое), которые при определенных условиях выполняют фагоцитарные функции. Рыхлая соединительная ткань включена в структуру различных органов и имеет непосредственное отношение к трофике (питанию) тканей и органов, являясь промежуточным звеном между кровеносным руслом и тканями органов. Наличие в ней коллагеновых и эластических волокон определяет ее опорную функцию. г) Ретикулярная ткань по своему строению похожа на мезенхиму. Она составляет основу (строму) различных кроветворных органов (селезенки, лимфатических узлов, костного мозга). Клетки ретикулярной ткани (ретикулоциты) имеют звездчатую форму. Ретикулярная ткань, а также эндотелий некоторых сосудов объединяются в ретикуло-эндотелиальную систему, обладающую защитной (фагоцитарной и др.) функцией и имеющую большое значение в физиологии и патологии организма. д) Жировая ткань характеризуется преимущественным содержанием жировых клеток в составе рыхлой соединительной ткани. Жировые клетки имеют округлую форму и содержат в цитоплазме жировые включения. Ядро обычно располагается на периферии. Содержание жира в клетках подвержено изменениям. Физиологическое значение жировой ткани заключается в образовании в организма запасов резервного питательного материала. Кроме того, жировая ткань обладает плохой теплопроводностью и определенной упругостью. Последнее обстоятельство обусловливает ее защитную (механическую) функцию. Жировая ткань имеется под кожей (подкожная жировая клетчатка), в сальнике, вокруг почек и в других местах. е) Пигментная ткань характеризуется наличием в составе рыхлой соединительной ткани большого числа клеток с включениями пигмента. Она расположена в сосудистой оболочке глаза, в радужке, в коже мошонки, в сосках молочных желез и в других местах. е) Плотная соединительная ткань бывают двух видов: неоформленная и оформленная. Плотная неоформленная соединительная ткань состоит из тех же элементов, что и рыхлая соединительная ткань, т.е. из клеток, в основном фибробластов, коллагеновых и эластических волокон, а также аморфного вещества, в которое включены эти элементы. В отличие от рыхлой ткани. Она имеет слабо развитое аморфное вещество, в котором пучки коллагеновых волокон располагаются в виде густого войлока. Клеточных элементов в ней мало. Из этой ткани состоит, в частности, сетчатый слой кожи, выполняющий опорную, а вместе с эпидермисом защитную функции. В плотной оформленной соединительной ткани коллагеновых волокна располагаются в определенном порядке. Примером такой ткани являются сухожилиями, состоящие из тонких параллельных пучков коллагеновых волокон, между которыми расположены рядами фиброциты. В плотной оформленной соединительной ткани более мелкие пучки коллагеновых волокон ( пучки первого порядка) объединяются в более крупные (пучки второго порядка) и т.д. Между крупными пучками находятся тонкие прослойки рыхлой соединительной ткани. Такое строение придает сухожилиям большую прочность, чем обеспечивается передача тяги мышц на скелет. Из этой ткани построены также суставные связки и фасции. ж) Эластическая ткань имеет характерные черты строения потной соединительной ткани. Однако в ней преобладают не коллагеновые, а эластические волокна. Эластические волокна придают ткани свойства упругости: она способна после растяжения вновь приобретать первоначальное положение и форму. Эластичная ткань входит в состав некоторых связок, а также кровеносных сосудов эластического типа (например, аорты). к) Хрящевая ткань выполняет опорную функцию и отличается упругой консистенцией. Она состоит из хрящевых клеток и основного вещества. В зависимости от строения основного вещества различают гиалиновый, волокнистый и эластический хрящи. Основное вещество гиалинового (стекловидного) хряща выглядит однородным, хотя в нм имеются тонкие фибриллы, выявляющиеся только при специальной обработке. В основном веществе волокнистого хряща находятся расположенные параллельно друг другу пучки коллагеновых волокон. В основном веществе эластического хряща имеется густая сеть эластических волокон. Хрящевые клетки располагаются в основном веществе в хрящевых полостях одиночно или группами. Хрящевая ткань развивается из мезенхимы. Клетки мезенхимы на месте будущего хряща сгущаются и, сливаясь друг с другом, образуют симпластическую массу, в которой расположены многочисленные ядра. Затем происходит разделение симпласта на отдельные клетки, между которыми появляется основное вещество хряща. Образовавшиеся хрящевые клетки остаются замурованными в основном веществе в хрящевых полостях. Наиболее распространен в организме человека гиалиновый хрящ. Из него построены хрящи носа, большая часть суставных хрящей и почти все хрящи дыхательных путей. Из волокнистого хряща построены межпозвоночные хрящи, суставные мениски и диски. Эластический хрящ встречается в ушной раковине; часть хрящей гортани также построена из этого хряща. л) Костная ткань имеет выраженную механическую функцию. Она состоит из костных клеток и основного вещества. Основное вещество костной ткани пропитано солями извести, вследствие чего она приобретает значительную твердость. Имеются грубоволокнистая и пластинчатая костные ткани, различающиеся строением основного вещества. Грубоволокнистая костная ткань содержит в основном веществе пучки коллагеновых фибрилл, проходящих в различных направлениях. Из грубоволокнистой костной ткани построены кости низших позвоночных животных, а также зародышей млекопитающих и человека. У последних эмбриональная (грубоволокнистая) костная ткань в дальнейшем заменяется более прочной пластинчатой костной тканью, из которой построены кости млекопитающих и человека во взрослом состоянии. Пластинчатая костная ткань характеризуется тем, что в ее основном веществе находятся расположенные в определенном порядке костные пластинки, состоящие из тонких коллагеновых волоконец. Костная ткань пронизана многочисленными соединяющимися друг с другом каналами остеонов, в которых проходят кровеносные сосуды и нервы. Эта каналы образованы концентрически- расположенными костными пластинками. Каждая такая система костных пластинок является структурной единицей кости и носит название остеона. Следовательно, остеон - это система костных пластинок, окружающих канал. Между отдельными остеонами располагаются вставочные пластинки. Поверхностные и внутренние слои кости содержат генеральные (общие) пластинки. В основном веществе костной ткани располагаются костные клетки, имеющие многочисленные отростки, которые пронизывают основное вещество. Пространства, где располагаются тела костных клеток и их отростки, называются соответственно костными полостями и костными канальцами. Ткани мышечные Мышечные ткани по своему строению, происхождению и функции значительно отличаются друг от друга. Объединяет их способность к сокращению, что обусловливает двигательную функцию тех органов, в которые они включены. Различают гладкую, поперечнополосатую мышечные ткани и мышечную ткань сердца. Гладкая мышечная ткань развивается из мезенхимы. Она состоит из вытянутых в длину веретенообразной формы гладкомышечных клеток, в цитоплазме которых располагаются также вытянутые в длину овальной формы ядра и специальные органоиды в виде тончайших волоконец - миофибрилл. Миофибриллы вытянуты по длине клетки и расположены параллельно друг другу. Благодаря способности миофибрилл к сокращению происходит сокращение гладкомышечной клетки в целом. Гладкомышечные клетки располагаются в органах пучками и пластами. Гладкая мышечная ткань входит в состав внутренних органов, находится в стенках кровеносных и лимфатических сосудов, в соединительной ткани кожи, в глазном яблоке и в других местах. Поперечнополосатая мышечная ткань называется еще скелетной или соматической. Она составляет мускулатуру опорно-двигательного аппарата, а также имеется в стенках некоторых внутренних органов (глотка, пищевод, язык, мышцы гортани). Поперечно-полосатая мышечная ткань состоит из отдельных, достигающих нескольких сантиметров в длину, волокон, имеющих строение симпласта. Характерным морфологическим признаком этой ткани является поперечная исчерченность составляющих ее волокон. Каждое волокно представляет собой длинную заостренную на концах трубочку, заполненную цитоплазмой (саркоплазмой) и многочисленными овальной формы ядрами. Мышечное волокно покрыто тонкой прозрачной оболочкой - сарколеммой. В саркоплазме расположены вытянутые по ходу волокна - миофибриллы. При рассмотрении миофибрилл под микроскопом можно заметить, что они состоят из чередующихся друг с другом светлых и темных участков, получивших название светлых и темных дисков. Эти диски располагаются в рядом лежащих миофибриллах на одном и том же уровне, чем и объясняется правильная поперечная исчерченность всего мышечного волокна. Сокращения гладкой мышечной ткани происходят непроизвольно, в то время как поперечнополосатая мускулатура, за исключением мышцы сердца, сокращается под влиянием нашей воли. Мышечная ткань сердца, так же как и скелетная, по характеру строения является поперечнополосатой. Однако отдельные волокна мышц сердца в отличие от скелетных соединены друг с другом посредством боковых ответвлений и состоят из клеток. Нервная ткань Главным структурным элементом нервной ткани является нервная клетка - нейрон, физиологическое значение которого определяется его способностью к проведению нервных импульсов. Вспомогательной структурной частью нервной ткани является нейроглия. Нейроглия состоит из клеток, имеющих большое количество отростков (паукообразная форма клеток). Между клетками нейроглии располагаются нервные клетки. Нейроглия по отношению к нейронам играет роль остова и обладает опорно-трофической функцией. Нейроглия в виде однослойного призматического эпителия выстилает также изнутри центральный канал спинного мозга и желудочки головного мозга. Эта эпителиальная выстилка указанных полостей носит название эпендимы. Нервные клетки имеют различную величину и форму: звездчатую, овальную, грушевидную и т.д. По функции они могут быть чувствительными, двигательными и вставочными. Каждый нейрон состоит из тела клетки, отростков и их окончаний. Соответственно числу отростков различают униполярные (одноотростчатые), биполярные (двуотростчатые) и мультиполярные (многоотростчатые) нервные клетки. Отростки нервных клеток по функции не одинаковы. Одни из них проводят нервные импульсы к телу клетки (дендриты), другие - от тела клетки (нейриты). Дендриты несут чувствительные импульсы к телу клетки, а нейриты от тела нервной клетки передают двигательные импульсы другим нервным клеткам или рабочим органам. Обычно дендритов у нервной клетки несколько, а нейрит один. Как дендриты, так и нейриты образуют окончания: дендриты - чувствительные, афферентные окончания, а нейриты - двигательные, эфферентные окончания. Двигательные окончания располагаются в скелетных мышцах и на гладко мышечных клетках различных органов. Чувствительные окончания находятся во всех органах. Благодаря обширной и дифференцированной чувствительной иннервации в центральную нервную систему поступают из внутренней среды организма сигналы об изменениях механического, химического, болевого, температурного и другого характера. Раздражения из внешней среды воспринимаются специальными органами чувств. Тело нервной клетки имеет ядро и цитоплазму (нейроплазму). В состав нейроплазмы включены нейрофибриллы. Нейрофибриллы переходят из тела нервной клетки в дендриты и нейрит и достигают их концевых разветвлений. Нейрофибриллы из одной нервной клетки в другую не переходят. Взаимоотношения между нервными клетками устанавливаются в виде контакта, называемого синапсом. Нервные волокна имеют особое строение и составляют основную массу белого вещества головного и спинного мозга, а также периферических нервов. По нервным волокнам проходят нервные импульсы. Они идут либо от чувствительных окончаний к телу нервной клетки (чувствительные волокна), либо от тела нервной клетки к рабочему органу 9двинательные волокна). Различаются мякотные (миелиновые) и безмякотные нервные волокна. Строение нервных волокон удобнее представить, если проследить их развитие в эмбриогенезе. В процессе развития от нервных клеток отходят отростки, которые прорастают на периферию к тканям и органам. Отдельные отростки собираются в пучки, которые и составляют периферические нервы. Вместе с отростками нервных клеток смещаются и клетки нейроглии, которые в периферических нервах образуют симпласт. В составе симпласта проходят безмякотные волокна. В последующем развитии у части безмякотных волокон образуется из элементов нейроглии миелиновая оболочка. Окруженные миелиновой оболочкой отростки нервных клеток называются мякотными (миелиновыми) волокнами. Мякотная оболочка, окружающая аксон, в некоторых местах теряет миелин. Эти истонченные участки называются перехватами Ранвье. Участок мякотной оболочки, заключенный между двумя перехватами. Содержит одно ядро и является клеткой (шванновской клеткой), в цитоплазме которой имеется жироподобное вещество миелин. Мякотное волокно покрыто снаружи тонкой оболочкой глиального происхождения, называемой неврилеммой.




  1. Значение опорно-двигательной системы К системе органов движения относят кости (скелет), связки, суставы и мышцы. Кости, связки и суставы являются пассивными элементами органов движения. Активной частью аппарата движения являются мышцы. Система органов движения - единое целое: каждая часть и орган формируются и функционируют в постоянной связи и взаимодействии друг с другом. Скелет служит опорой и защитой всего тела и отдельных органов, а многие кости являются еще и мощными рычагами, с помощью которых совершаются разнообразные движения тела и его частей в пространстве. Мышцы приводят в движение всю систему костных рычагов. Скелет образует структурную основу тела и определяет в значительной мере его размер и форму. Такие части скелета, как череп, грудная клетка и таз, позвоночный столб, служат вместилищем и защитой жизненно важных органов - мозга, легких, сердца, кишечника и др. Еще недавно считалось, что роль скелета в организме человека ограничена функцией опоры тела и участием в движении. Отсюда произошел термин «опорно-двигательный аппарат». В настоящее время установлено, что функции скелета значительно шире. Скелет активно участвуют в обмене веществ, в частности в поддержании на определенном уровне минерального состава крови. Кроме того, ряд веществ, входящих в состав костей (кальций, фосфор, лимонная кислота и др.), при необходимости легко вступает в обменные реакции. Большинство мышц прикрепляется к костям. Мышцы включают кости скелета в движение и совершают работу. Многие мышцы, окружая полости тела, защищают внутренние органы. Мышцы, их строение и функции В организме человека насчитывают около 600 скелетных мышц. Мышечная система составляет значительную часть обшей массы тела человека. Если у новорожденных масса всех мышц составляет 23% массы тела, а в 8 лет - 27%, то в 17-18 лет она достигает 43-44%, а у спортсменов с хорошо развитой мускулатурой - даже 50%. Отдельные мышечные группы растут неравномерно. У грудных детей прежде всего развиваются мышцы живота, позднее - жевательные. К концу первого года жизни в связи с ползанием и началом ходьбы заметно растут мышцы спины и конечностей . За весь период роста ребенка масса мускулатуры увеличивается в 35 раз. В период полового созревания (12-16 лет) наряду с удлинением трубчатых костей удлиняются интенсивно и сухожилия мышц. Мышцы в это время становятся длинными и тонкими, а подростки выглядят длинноногими и длиннорукими. В 15-18 лет продолжается дальнейший рост поперечника мышц. Развитие мышц продолжается до 25-30 лет Мышцы ребенка бледнее, нежнее и более эластичны, чем мышцы взрослого человека. В мышце различают среднюю часть - брюшко, состоящее из мышечной ткани, и сухожилие, образованное плотной соединительной тканью. С помощью сухожилий мышцы прикрепляются к костям, однако некоторые мышцы могут прикрепляться и к различным органам (глазному яблоку), к коже (мышцы лица и шеи) и т.д. В мышцах новорожденного сухожилия развиты слабо. Лишь к 12 -14 годам устанавливаются те мышечно-сухожильные отношения, которые характерны для мышц взрослого. Каждая мышца состоит из большого количества поперечно-полосатых мышечных волокон, расположенных параллельно и связанных между собой прослойками рыхлой соединительной ткани в пучки. Вся мышца снаружи покрыта тонкой соединительной оболочкой - фасцией. Содержимое мышечных волокон состоит из саркоплазмы, в которой располагаются сократительные нити - миофибриллы, а также митохондрии и другие органоиды клетки. Мышцы богаты кровеносными сосудами, по которым кровь приносит к ним питательные вещества и кислород, а выносит продукты обмена. Имеются в мышцах и лимфатические сосуды. В мышцах расположены нервные окончания - рецепторы, которые воспринимают степень сокращения и растяжения мышцы. Форма и величина мышц зависит от выполняемой ими работы. Различают мышцы длинные, широкие, короткие и круговые. Длинные мышцы располагаются на конечностях, короткие - там, где размах движения мал (например, между позвонками). Широкие мышцы располагаются преимущественно на туловище, в стенках полостей тела (мышцы живота, спины, груди). Круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их. Такие мышцы называют сфинктерами. По функции различают мышцы - сгибатели, разгибатели, приводящие и отводящие мышцы, а также мышцы, вращающие внутрь и наружу. Значение физических упражнений для формирования скелета мышц Мощность и величина мышц находятся в прямой зависимости от упражнений и тренировки. В процессе работы усиливается кровоснабжение мышц, улучшается регуляция их деятельности нервной системой, происходит рост мышечных волокон, т.е. увеличивается масса мускулатуры. Способность к физической работе, выносливость являются результатом тренировки мышечной системы. Увеличение двигательной активности детей и подростков приводит к изменениям в костной системе и более интенсивному росту их тела. Под влиянием тренировки кости становятся более крепкими и устойчивыми к нагрузкам и травмам. Физические упражнения и спортивная тренировка, организованные с учетом возрастных особенностей детей и подростков, способствуют устранению нарушений осанки. Скелетные мышцы оказывают влияние на течение обменных процессов и на осуществление функций внутренних органов. Дыхательные движения осуществляются мышцами груди и диафрагмой, а мышцы брюшного пресса способствуют нормальной деятельности органов брюшной полости, кровообращения и дыхания. Сейчас все уже знают, что малоподвижный образ жизни - гипокинезия - вреден здоровью. Избыточная масса, развивающийся склероз и связанные с ним сердечно-сосудистые нарушения - следствия гопокинезии. Разносторонняя мышечная деятельность повышает работоспособность организма. При этом уменьшаются энергетические затраты организма на выполнение работы. При систематическом выполнении физических нагрузок формируются более совершенный механизм дыхательных движений. Увеличивается глубина дыхания, повышается использование кислорода тканями организма. Под влиянием тренировок увеличивается жизненная емкость легких. Кровеносные сосуды в процессе тренировки становятся более эластичными, что улучшает условия передвижения крови. Если человек малоподвижен по роду свой работы, не занимается спортом и физической культурой, то в среднем и пожилом возрасте эластичность и сократительная способность его мышц снижается. Мышцы становятся дряблыми. В результате слабости мышц брюшного пресса происходит опущение внутренних органов и нарушается функция желудочно-кишечного тракта. Слабость мышц спины вызывает изменение осанки. Постепенно развивается сутулость. Нарушается координация движений. Для нашего времени характерны широкие возможности повышения уровня физического развития человека. Нет возрастного предела для занятий физической культурой. В пожилом возрасте систематическое выполнение физических упражнений препятствует отложению солей в суставах, способствует сохранению их подвижности, укрепляет связочный аппарат и мускулатуру. При этом двигательные навыки сохраняются на высоком уровне, пожилые люди с возрастом не теряют уверенности в движениях. Упражнения являются эффективным средством совершенствования двигательного аппарата человека. Они лежат в основе любого двигательного навыка и умения. Под влиянием упражнений формируются законченность и устойчивость всех форм двигательной деятельности человека. Физиологический смысл упражнения сводится к образованию динамического стереотипа. В начальный период выполнения упражнения имеет место широко распространенное возбуждение в коре больших полушарий головного мозга. В деятельное состояние вовлекается большое число мышц, движения ученика неловки, суетливы, хаотичны. При этом сокращаются многочисленные мышечные группы, часто не имеющие никакого отношения к данному двигательному акту. Вследствие этого развивается торможение, снижается мышечная работоспособность. По мере упражнений широко распространенное корковое возбуждение концентрируется, образуется очаг стационарного возбуждения, концентрированного в ограниченной группе мышц, непосредственно связанных с данными упражнением или двигательным актом, отчего движения становятся более четкими, свободными, координированными и более экономичными в смысле затрат времени и энергии На заключительной стадии образуется устойчивый стереотип, по мере повторения упражнения движения становятся автоматизированными, хорошо координированными, и они выполняются только за счет сокращения тех групп мышц, которые необходимы для данного двигательного акта. При помощи систематической тренировки достигается увеличение мощности и полезного действия мышц тела. Это увеличение достигается, с одной стороны, благодаря развитию мышц, участвующих в данной работе ( тренируемые мышцы увеличиваются в объеме, в связи с чем возрастает их сила), а также в результате изменений, которые претерпевают сердечно-сосудистая и дыхательная системы. Дыхание у тренированных людей в покое более редкое и доходит до 8-10 в мин по сравнению с 16-20 у нетренированных. Уменьшение частоты дыхания сопровождается углублением дыхания, поэтому вентиляция легких не уменьшается. При мышечной работе легочная вентиляция может доходить до 120 л в минуту. У тренированных людей увеличение вентиляции совершается за счет углубления дыхания, тогда как у нетренированных - за счет учащения дыхания, которое остается поверхностным. Углубленное дыхание тренированных людей способствует лучшему насыщению крови кислородом. У тренированных людей происходит уменьшение числа сердечных сокращений, но увеличивается систолический (ударный) и минутный объем крови при незначительном учащении работы сердца. У нетренированных людей минутный объем увеличивается за счет учащения сердечной деятельности при незначительном повышении систолического объема. Предупреждение искривления позвоночника и развития плоскостопия Каждому человеку свойственна специфическая для него осанка, или поза, т.е. положение тела во время стояния, сидения, ходьбы и работы. Осанка обычно поддерживает я статическим напряжением мышц. При правильной, или стройной, осанке изгибы позвоночного столба умеренные, плечи развернуты, ноги прямые с нормальными сводами стоп. Люди с хорошей осанкой стройны, голова их держится прямо или слегка откинута назад, грудь несколько выступает над животом. Мышцы таких людей упруги, движения собранные, четкие. Правильная осанка наиболее благоприятная для функционирования системы органов движения и внутренних органов человека, что в конечном результате способствует повышению работоспособности. Неправильная осанка затрудняет работу сердца, легких, желудочно-кишечного тракта; при этом уменьшается жизненная емкость легких, снижается обмен веществ, появляются головные боли, повышенная утомляемость. Искривление позвоночного столба в сторону (сколиоз) нередко развивается у детей со слабым физическим развитием, в результате длительного сидения за столом или партой, при неправильной посадке, особенно при письме, при несоответствии размеров мебели пропорциям тела школьников. При наличии бокового искривления позвоночника возникает также вращение его вокруг вертикальной оси (скручивание). Вслед за искривлением грудного отдела позвоночника происходит скручивание соединенных с позвоночником ребер. Это ведет к деформации грудной клетки. Следует иметь в виду, что вначале сколиоз носит характер нестойкого дефекта осанки и если вовремя обратить внимание ребенка, то этот дефект легко корригируется самим ребенком. Если вовремя не обратить внимание на этот дефект, то дефект осанки сохраняется ребенком постоянно, что приводит к изменениям в мышцах и связках туловища, а затем и костной части позвоночного столба. Сводчатое расположение костей стопы поддерживается большим количеством крепких суставных связок. При длительном стоянии и сидении, переносе больших тяжестей, при ношении узкой обуви связки растягиваются, что приводит к уплощению стопы. И тогда говорят, что развилось плоскостопие. Заболевание рахитом также может способствовать развитию плоскостопия. Неблагоприятно сказывается на состоянии стопы постоянное пребывание детей в помещении в утепленной и валяной обуви (т.е. мягкой), так как это расслабляет мышцы стопы. При плоскостопии нарушается осанки, из-за ухудшения кровоснабжения быстро наступает утомление нижних конечностей, часто сопровождающееся ломотой, болями, а иногда и судорогами. Для профилактики плоскостопия рекомендуют ходьбу босиком по неровной поверхности, по песку, что способствует укреплению свода стопы. Упражнения для мышц ног, особенно для мышц стопы, ходьба на цыпочках, прыжки в дину и высоту, бег, игра в футбол, волейбол и баскетбол, плавание предупреждают развитие плоскостопия.
  1   2   3   4   5   6   7   8   9   10




Похожие:

Единство организма и среды iconТретьеклассники вступили в ряды доо «Единство»
Доо «Единство», а значит и в детское объединение школы «Бригантина». В торжественной обстановке дюц им повязали галстуки почетные...
Единство организма и среды iconСпециализация: «Информационные системы» Специальность
Биосфера и человек: структура биосферы, экосистемы, взаимоотношение организма и среды, экология и здоровье человека
Единство организма и среды iconДетская организация " Единство" пополнила свои ряды. 25 ноября состоялся праздник вступления в детскую организация «Единство»
«Единство» учащихся 2 класса. Мероприятие было организовано культурно-массовым сектором нашей организации. Второклассники танцевали,...
Единство организма и среды iconПрезентация книги Ордем Гали «Анины секреты» Урок толерантности Что такое толерантность? Толерантность
Способность организма переносить неблагоприятные влияния того или иного фактора среды
Единство организма и среды iconУчастие биоритмов организма в процессах развития и старения. Гипотеза резонанса в. Е. Чернилевский
Схя, во всей системе бр происходит резонанс, что выражается в высокой жизнеспособности организма. Далее периоды ритмов ядер продолжают...
Единство организма и среды iconПредупреждение дисбаланса питания путем опережающего поступления нутриентов
Существует несколько разновидностей микронутриентов, каждая из которых выполняет свою специфическую функцию. Однако основное предназначение...
Единство организма и среды iconЦель программы: развитие интереса к моделированию, конструированию и эстетике быта; привитие чувства прекрасного; выработка у ребенка аккуратности. Основные задачи
Формирование личности ребенка происходит в триедином неразрывном и непрерывном процессе обучения, воспитания и развития. Единство...
Единство организма и среды iconМинистерство природных ресурсов и охраны окружающей среды республики беларусь государственное учреждение «республиканский центр радиационного контроля и мониторинга окружающей среды»
Обзор предназначен для государственных и общественных организаций, заинтересованных в получении и использовании информации о состоянии...
Единство организма и среды iconУрок №6 «Общий обзор организма»
Дать понятие об уровнях организации человеческого организма, плане его строения, топографии внутренних органов и полостях тела, системах...
Единство организма и среды iconОсновы экологии Задания к теоретической части программы
Впервые определение экологии дал в 1866 году немецкий ученый Э. Геккель. Он писал, что под экологией, или экономией природы, «мы...
Единство организма и среды iconПриказ №43 Об утверждении Положения об общественном, инспекторе по охране окружающей среды
В целях обеспечения широкого участия общественных и других некоммерческих объединений, граждан в проведении мероприятий по охране:...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов