Алгебра матриц основные понятия icon

Алгебра матриц основные понятия



НазваниеАлгебра матриц основные понятия
Дата конвертации16.09.2012
Размер77.84 Kb.
ТипДокументы
1. /Алгебра матриц.docАлгебра матриц основные понятия


--



АЛГЕБРА МАТРИЦ


    1. ОСНОВНЫЕ ПОНЯТИЯ


Определение. Прямоугольная таблица из m строк и n столбцов, заполненная некоторыми математическими объектами, называется – матрицей.

Мы будем рассматривать числовые матрицы. Числа, составляющие матрицу, называются ее элементами. Для обозначения матрицы, как правило, используются круглые скобки. При записи, в общем виде элементы матрицы обозначаются одной буквой с двумя индексами, из которых первый указывает номер строки, а второй – номер столбца матрицы. Например, матрица


.

.

В сокращенной записи: А=(аij); где аij - действительные числа, i=1,2,…m;

j=1,2,…,n (кратко , . ). Произведение называют размером матрицы.

Матрица называется квадратной порядка n, если число ее строк равно числу столбцов и равно n:



Упорядоченный набор элементов а1122,…,аnn называется главной диагональю, в свою очередь, а1n2,n-1,…,аn1 побочной диагональю матрицы. Квадратная матрица, элементы которой удовлетворяют условию:

называется диагональной, т.е. диагональная матрица имеет вид:



Диагональная матрица порядка n называется единичной, если все элементы ее главной диагонали равны 1. Матрица любого размера называется нулевой или нуль матрицей, если все ее элементы равны нулю.
Единичная матрица обозначается буквой Е, нулевая – О. Матрицы имеют вид:


.



    1. ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД МАТРИЦАМИ


Определение. Суммой матриц А=(аij) и B=(bij) одинаковых размеров называется матрица С=(сij) тех же размеров, такая что cij=aij+bij для всех i и j.

.

Таким образом, чтобы сложить матрицы А и В, надо сложить их элементы, стоящие на одинаковых местах. Например,

A + B = = C

Определение. Произведение матрицы А на число называется матрица А=( аij), получаемая умножением всех элементов матрицы А на число .




Например, если и =5, то


Разность матриц А и В можно определить равенством А-В=А+(-1)В.

Рассмотренные операции называются линейными.

Отметим некоторые свойства операций.

Пусть А,В,С – матрицы одинакового размера; , - действительные числа.

  1. А+В = В+А – коммутативность сложения.

  2. (А+В)+С = А+(В+С) – ассоциативность сложения.

  3. Матрица О, состоящая из нулей, играет роль нуля: А+О=А.

  4. Для любой матицы А существует противоположная –А, элементы которой отличаются от элементов А знаком, при этом А+( -А)=О.

  5. (А) = ()А = (А). 6. (+)А = А+А.

7. (А+В) = А+В. 8. 1* А = А. 9. 0 * А = 0.



    1. УМНОЖЕНИЕ МАТРИЦ


В матричной алгебре важную роль играет операция умножения матриц, это весьма своеобразная операция.

Определение. Произведением матрицы А=(аij) размера и прямоугольной матрицы B=(bij) размера называется прямоугольная матрица С=(сij) размера , такая что cij=ai1+b1j+ ai2+b2j+…+ aik+bkj; , .

Таким образом, элемент произведения матриц А и В, стоящий в i-ой строке и j-ом столбце, равен сумме произведений элементов i-ой строки первой матрицы А на соответствующие элементы j-ого столбца второй матрицы В т.е.

.

Произведение С=АВ определено, если число столбцов матрицы А равно числу строк матрицы В. Это условие, а также размеры матриц можно представить схемой:



Очевидно, что операция умножения квадратных матриц всегда определена.

Примеры. Найдем произведения матриц АВ и ВА, если они существуют.

1. , .







2. , .







Таким образом, коммутативный (переместительный) закон умножения матриц, вообще говоря, не выполняется, т.е. В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е такого же порядка, т.е.

3. , .

Для этих матриц произведение как АВ ,так и ВА не существует.

  1. ,




Получим , ВА – не существует.

Свойства умножения матриц.

Пусть А,В,С – матрицы соответствующих размеров (т.е. произведения матриц определены), - действительное число. Тогда на основании определений операций и свойств действительных чисел имеют место следующие свойства:

  1. (АВ)С = А(ВС) – ассоциативность.

  2. (А+В)С = АС+ВС – дистрибутивность.

  3. А(В+С) = АВ+АС – дистрибутивность.

  4. (АВ) = (А)В = А(В).

  5. ЕА = АЕ = А, для квадратных матриц единичная матрица Е играет роль единицы.

Приведем пример доказательства лишь одного свойства. Докажем, например, свойство 3.

Пусть для А=(аij), B=(bij), C=(cij) произведения матриц определены. Найдем элемент i-ой строки и j-го столбца матрицы А(В+С). Это будет число

аi1(b1j+c1j)+ аi2(b2j+c2j)+…+аin(bnj+cnj) =

i1b1j+ai2b2j+…+ainbnj)+ (аi1c1j+ai2c2j+…+aincnj).

Первая сумма в правой части равенства равна элементу из i-ой строки и j-го столбца матрицы АВ, а вторая сумма равна элементу из i-ой строки и j-го столбца матрицы АС. Рассуждение верно при любых i и j, то свойство 3 доказано.

Упражнение 1. Проверьте свойство ассоциативности 1 для матриц:

, , .

Упражнение 2. Проверьте свойство дистрибутивности 2 для матриц:

, , .

Упражнение 3. Найти матрицу А3, если .


    1. ВЫРОЖДЕННЫЕ И НЕВЫРОЖДЕННЫЕ МАТРИЦЫ


Определение. Матрица называется вырожденной, если ее определитель равен нулю, и невырожденной, если определитель матрицы отличен от нуля.

Пример. , = 16-15 = 1 0; А – невырожденная матрица.

, = 12-12 = 0; А – вырожденная матрица.

Теорема. Произведение матриц есть вырожденная матрица тогда и только тогда, когда хотя бы один из множителей есть вырожденная матрица.

Необходимость. Пусть АВ – вырожденная матрица, т.е. =0. Тогда, в силу того, что определитель произведения матриц равен произведению определителей перемножаемых матриц, имеем Это значит, что хотя бы одна из матриц А или В является вырожденной.

Достаточность. Пусть в произведении АВ матрица А вырожденная, т.е. =0. Найдем , т.к. =0; итак, =0; АВ - вырожденная матрица.

Замечание. Доказанная теорема справедлива для любого числа множителей.


    1. ОБРАТНАЯ МАТРИЦА


Определение. Квадратная матрица В называется обратной по отношению к матрице А такого же размера, если

АВ = ВА = Е. (1)

Пример. , .



В – матрица обратная к А.

Теорема. Если для данной матрицы обратная существует, то она определяется однозначно.

Предположим, что для матрицы А существуют матрицы Х и У, такие, что

АХ = ХА = Е (2)

АУ = УА = Е (3)

Умножая одно из равенств, например, АХ = Е слева на У, получим У(АХ) = УЕ. В силу ассоциативности умножения имеем (УА)Х = УЕ. Поскольку УА = Е, то ЕХ = УЕ, т.е. Х = У. Теорема доказана.

Теорема (необходимое и достаточное условие существования обратной матрицы).

Обратная матрица А-1 существует тогда и только тогда, когда исходная матрица А невырожденная.

Необходимость. Пусть для матрицы А существует обратная А-1, т.е. А А-1 = А-1А = Е. Тогда, А А-1= АА-1=Е=1, т.е. А0 и А-10; Аневырожденная.

Достаточность. Пусть дана невырожденная матрица порядка n

,

так что ее определитель 0. Рассмотри матрицу, составленную из алгебраических дополнений к элементам матрицы А:

,

ее называют присоединенной к матрице А.

Следует обратить внимание на то, что алгебраические дополнения к элементам i-ой строки матрицы А стоят в i-ом столбце матрицы А*, для .

Найдем произведения матриц АА* и А*А. Обозначим АА* через С, тогда по определению произведения матриц имеем: Сij = аi1А 1j + а i2А 2j + … + а inАnj;  = 1, n: j = 1, n.

При  = j получим сумму произведений элементов  - ой строки на алгебраические дополнения этой же строки, такая сумма равняется значению определителя. Таким образом Сij = |А| =  - это элементы главной диагонали матрицы С. При  j, т.е. для элементов Сij вне главной диагонали матрицы С, имеем сумму произведений всех элементов некоторой строки на алгебраические дополнения другой строки, такая сумма равняется нулю. Итак, = АА*

Аналогично доказывается, что произведение А на А* равно той же матрице С. Таким образом, имеем А*А = АА* = С. Отсюда следует, что



Поэтому, если в качестве обратной матрицы взять , то Итак, обратная матрица существует и имеет вид:

.

Пример. Найдем матрицу, обратную к данной:



Находим  = |А| = -1  0, А существует. Далее находим алгебраические дополнения элементов матрицы А:

А = = 0 ; А = = -1; А = = 3;

А = = -3; А = = 3; А = = -4;

А = = 1; А = = -1; А = = 1;

А =



Похожие:

Алгебра матриц основные понятия iconДокументы
1. /Шпора (алгебра матриц)/Шпора.doc
2. /Шпора...

Алгебра матриц основные понятия iconДокументы
...
Алгебра матриц основные понятия iconВопрос 5 Дидактика и ее основные категории. Закономерности и принципы современной дидактики Понятия система дидактики
Понятия система дидактики включает в себя философские, общенаучные и частнонаучные понятия
Алгебра матриц основные понятия iconКузмичева Алла Алексеевна Игра «Кто хочет стать отличником?» 10 класс Цели: Образовательные: в интересной игровой форме повторить основные понятия и закон
Образовательные: в интересной игровой форме повторить основные понятия и законы молекулярно-кинетической теории и термодинамики,...
Алгебра матриц основные понятия iconМетодические указания и пример выполнения задания 2
Для выполнения контрольной работы студент должен уметь работать со специальными математическими функциями: умножение матриц, обращение...
Алгебра матриц основные понятия iconАлгебра логики. Основные понятия. Область применения алгебры- логики. Логические функции. Таблицы истинности
Логика (гр logos — мысль, слово, речь, разум) — это наука о законах и формах мышления, направленная на познание объективного мира....
Алгебра матриц основные понятия iconВведение в фармакологию. Основные вопросы
Цель: знать основные термины, понятия и количественные законы фармакодинамики лекарств. Уметь использовать их для объяснения принципов,...
Алгебра матриц основные понятия iconДокументы
1. /ь 1(Основные понятия)/Самиздат1 1.doc
2. /ь...

Алгебра матриц основные понятия iconОсновные понятия и принципы местного самоуправления
В настоящее время в литературе отсутствует единое научное толкование местного самоуправления и предлагается более тридцати его определений....
Алгебра матриц основные понятия iconДокументы
1. /Алгебра 8кл_Макарычев_2001_1-90.pdf
2. /Алгебра...

Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов