Тема : Системы счисления и двоичное представление информации в памяти компьютера icon

Тема : Системы счисления и двоичное представление информации в памяти компьютера



НазваниеТема : Системы счисления и двоичное представление информации в памяти компьютера
Дата конвертации17.09.2012
Размер99.93 Kb.
ТипДокументы

© К. Поляков, 2009-2011

А1 (базовый уровень, время – 1 мин)


Тема: Системы счисления и двоичное представление информации в памяти компьютера.

Что нужно знать:

  • перевод чисел между десятичной, двоичной, восьмеричной и шестнадцатеричной системами счисления (см. презентацию «Системы счисления»)

    Полезно помнить, что в двоичной системе:

    • четные числа оканчиваются на 0, нечетные – на 1;

    • числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на 2k, оканчиваются на k нулей

    • если число N принадлежит интервалу 2k-1  N < 2k, в его двоичной записи будет всего k цифр, например, для числа 125:

      26 = 64  125 < 128 = 27, 125 = 11111012 (7 цифр)

    • числа вида 2k записываются в двоичной системе как единица и k нулей, например:

    16 = 24 = 100002

    • числа вида 2k-1 записываются в двоичной системе k единиц, например:

    15 = 24-1 = 11112

    • если известна двоичная запись числа N, то двоичную запись числа 2·N можно легко получить, приписав в конец ноль, например:
      15 = 11112, 30 = 111102, 60 = 1111002, 120 = 11110002

  • отрицательные целые числа хранятся в памяти в двоичном дополнительном коде (подробнее см. презентацию «Компьютер изнутри»)

  • для перевода отрицательного числа (-a) в двоичный дополнительный код нужно сделать следующие операции:

    • перевести число a-1 в двоичную систему счисления

    • сделать инверсию битов: заменить все нули на единицы и единицы на нули в пределах разрядной сетки (см. пример далее)
^

Пример задания:


Сколько единиц в двоичной записи числа 1025?

1) 1 2) 2 3) 10 4) 11

Решение (вариант 1, прямой перевод):

  1. переводим число 1025 в двоичную систему: 1025 = 10000000001­2

  2. считаем единицы, их две

  3. Ответ: 2

Возможные проблемы:

легко запутаться при переводе больших чисел.


Решение (вариант 2, разложение на сумму степеней двойки):

  1. тут очень полезно знать наизусть таблицу степеней двойки, где 1024 = 210 и 1 = 20

  2. таким образом, 1025= 1024 + 1 = 210 + 20

  3. вспоминая, как переводится число из двоичной системы в десятичную (значение каждой цифры умножается на 2 в степени, равной её разряду), понимаем, что в двоичной записи числа ровно столько единиц, сколько в приведенной сумме различных степеней двойки, то есть, 2

  4. Ответ: 2

^ Возможные проблемы:

нужно помнить таблицу степеней двойки.

Когда удобно использовать:

  • когда число чуть больше какой-то степени двойки
^

Ещё пример задания:


Дано: и . Какое из чисел с, записанных в двоичной системе счисления, удовлетворяет неравенству a < c < b?

1) 110110012 2) 110111002 3) 110101112 4) 110110002

^ Общий подход:

перевести все числа (и исходные данные, и ответы) в одну (любую!) систему счисления и сравнить.

Решение (вариант 1, через десятичную систему):





  1. переводим в десятичную систему все ответы:

110110012 = 217, 11011100 2= 220, 110101112 = 215, 110110002=216

  1. очевидно, что между числами 215 и 217 может быть только 216

  2. таким образом, верный ответ – 4 .

Возможные проблемы:

арифметические ошибки при переводе из других систем в десятичную.

Решение (вариант 2, через двоичную систему):

  1. (каждая цифра шестнадцатеричной системы отдельно переводится в четыре двоичных – тетраду);

  2. (каждая цифра восьмеричной системы отдельно переводится в три двоичных – триаду, старшие нули можно не писать);

  3. теперь нужно сообразить, что между этими числами находится только двоичное число 110110002 – это ответ 4.




^ Возможные проблемы:

запись двоичных чисел однородна, содержит много одинаковых символов – нулей и единиц, поэтому легко запутаться и сделать ошибку.

^ Решение (вариант 3, через восьмеричную систему):

  1. (сначала перевели в двоичную систему, потом двоичную запись числа разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, так как для чисел от 0 до 7 их восьмеричная запись совпадает с десятичной);

  2. , никуда переводить не нужно;

  3. переводим в восьмеричную систему все ответы:

110110012 = 011 011 0012 = 3318 (разбили на триады справа налево, каждую триаду перевели отдельно в десятичную систему, как в п. 1)

11011100 2= 3348, 110101112 = 3278, 110110002=3308

  1. в восьмеричной системе между числами 3278 и 3318 может быть только 3308

  2. таким образом, верный ответ – 4 .




^ Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 7 (или переводить эти числа в двоичную систему при решении).

Решение (вариант 4, через шестнадцатеричную систему):

  1. никуда переводить не нужно;

  2. (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады справа налево, каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа, большие 9, на буквы – A, B, C, D, E, F);

  3. переводим в шестнадцатеричную систему все ответы:

110110012 = 1101 10012 = D916 (разбили на тетрады справа налево, каждую тетраду перевели отдельно в десятичную систему, все числа, большие 9, заменили на буквы – A, B, C, D, E, F, как в п. 1)

11011100 2= DC16, 110101112 = D716, 110110002=D816

  1. в шестнадцатеричной системе между числами D716 и D916 может быть только D816

  2. таким образом, верный ответ – 4 .

Возможные проблемы:

нужно помнить двоичную запись чисел от 0 до 15 (или переводить эти числа в двоичную систему при решении).

Выводы:

  • есть несколько способов решения, «каждый выбирает для себя»;

  • наиболее сложные вычисления – при переводе всех чисел в десятичную систему, можно легко ошибиться;

  • сравнивать числа в двоичной системе сложно, также легко ошибиться;

  • видимо, в этой задаче наиболее простой вариант – использовать восьмеричную систему, нужно просто запомнить двоичные записи чисел от 0 до 7 и аккуратно все сделать;

  • в других задачах может быть так, что выгоднее переводить все в десятичную или шестнадцатеричную систему счисления.
^

Еще пример задания:


Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)?

1) 3 2) 4 3) 5 4) 6

Решение (вариант 1, классический):

  1. переводим число 78 в двоичную систему счисления:

78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 10011102

  1. по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов

  2. чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

78 = 010011102

  1. делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011102 → 101100012

  1. добавляем к результату единицу

101100012 + 1 = 101100102

это и есть число (-78) в двоичном дополнительно коде

  1. в записи этого числа 4 единицы

  2. таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  • нужно не забыть в конце добавить единицу, причем это может быть не так тривиально, если будут переносы в следующий разряд – тут тоже есть шанс ошибиться из-за невнимательности

Решение (вариант 2, неклассический):

  1. переводим число 78 – 1=77 в двоичную систему счисления:

77 = 64 + 8 + 4 + 1 = 26 + 23 + 22 + 20 = 10011012

  1. по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов

  2. чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

77 = 010011012

  1. делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011012 → 101100102

это и есть число (-78) в двоичном дополнительно коде

  1. в записи этого числа 4 единицы

  2. таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  • нужно помнить, что в этом способе в двоичную систему переводится не число a, а число
    a-1; именно этот прием позволяет избежать добавления единицы в конце (легче вычесть в десятичной системе, чем добавить в двоичной)

^ Решение (вариант 3, неклассический):

  1. переводим число 78 в двоичную систему счисления:

78 = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 10011102

  1. по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов

  2. чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

78 = 010011102

  1. для всех битов, которые стоят слева от младшей единицы, делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

010011102 → 101100102

это и есть число (-78) в двоичном дополнительно коде

  1. в записи этого числа 4 единицы

  2. таким образом, верный ответ – 2 .

Возможные ловушки и проблемы:

  • нужно помнить, что при инверсии младшая единица и все нули после нее не меняются
^

Задачи для тренировки1:


  1. Как представлено число 8310 в двоичной системе счисления?

1) 10010112 2) 11001012 3) 10100112 4) 1010012

  1. Сколько единиц в двоичной записи числа 195?

1) 5 2) 2 3) 3 4) 4

  1. Сколько единиц в двоичной записи числа 173?

1) 7 2) 5 3) 6 4) 4

  1. Как представлено число 25 в двоичной системе счисления?

1) 10012 2) 110012 3) 100112 4) 110102

  1. Как представлено число 82 в двоичной системе счисления?

1) 10100102 2) 10100112 3) 1001012 4) 10001002

  1. Как представлено число 263 в восьмеричной системе счисления?

1) 3018 2) 6508 3) 4078 4) 7778

  1. Как записывается число 5678 в двоичной системе счисления?

1) 10111012 2) 1001101112 3) 1011101112 4) 111101112

  1. Как записывается число A8716 в восьмеричной системе счисления?

1) 4358 2) 15778 3) 52078 4) 64008

  1. Как записывается число 7548 в шестнадцатеричной системе счисления?

1) 73816 2) 1A416 3) 1EC16 4) A5616

  1. Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-128)?

1) 1 2) 2 3) 3 4) 4

  1. Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-35)?

1) 3 2) 4 3) 5 4) 6

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100110102 2) 100111102 3) 100111112 4) 110111102

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111110012 2) 110110002 3) 111101112 4) 111110002

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110110102 2) 111111102 3) 110111102 4) 110111112

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102 2) 111011102 3) 111010112 4) 111011002

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102 2) 111010002 3) 111010112 4) 111011002

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110100112 2) 110011102 3) 110010102 4) 110011002

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111000112 2) 110110102 3) 101011012 4) 110111012

  1. Сколько единиц в двоичной записи числа 64?

1) 1 2) 2 3) 4 4) 6

  1. Сколько единиц в двоичной записи числа 127?

1) 1 2) 2 3) 6 4) 7

  1. Сколько значащих нулей в двоичной записи числа 48?

1) 1 2) 2 3) 4 4) 6

  1. Сколько значащих нулей в двоичной записи числа 254?

1) 1 2) 2 3) 4 4) 8

  1. Какое из чисел является наименьшим?

1) E616 2) 3478 3) 111001012 4) 232

  1. Какое из чисел является наибольшим?

1) 9B16 2) 2348 3) 100110102 4) 153

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101011002 2) 101010102 3) 101010112 4) 101010002

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 110110102 2) 111111102 3) 110111112 4) 110111102

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100010102 2) 100011102 3) 100100112 4) 100011002

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 111010102 2) 111011102 3) 111011002 4) 111010112

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101010102 2) 101111002 3) 101000112 4) 101011002

  1. Сколько единиц в двоичной записи числа 173?

1) 4 2) 5 3) 6 4) 7

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 10000002 2) 10001102 3) 10001012 4) 10001112

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 100010012 2) 100011002 3) 110101112 4) 111110002

  1. Дано: , . Какое из чисел С, записанных в шестнадцатеричной системе счисления, удовлетворяет неравенству ?

1) AA16 2) B816 3) D616 4) F016



  1. Дано: , . Какое из чисел Z, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 1111110012 2) 1111001112 3) 1101111002 4) 1101101112

  1. Дано: , . Какое из чисел С, записанных в двоичной системе счисления, удовлетворяет неравенству ?

1) 101110102 2) 101010102 3) 1010101002 4) 101000102

  1. Сколько единиц в двоичной записи десятичного числа 513?

1) 5 2) 2 3) 3 4) 4

  1. Сколько нулей в двоичной записи десятичного числа 497?

1) 5 2) 2 3) 3 4) 4



1 Источники заданий:

  1. Демонстрационные варианты ЕГЭ 2004-2011 гг.

  2. Гусева И.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.

  3. Якушкин П.А., Лещинер В.Р., Кириенко Д.П. ЕГЭ 2010. Информатика. Типовые тестовые задания. — М.: Экзамен, 2010.

  4. Абрамян М.Э., Михалкович С.С., Русанова Я.М., Чердынцева М.И. Информатика. ЕГЭ шаг за шагом. — М.: НИИ школьных технологий, 2010.

  5. Чуркина Т.Е. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.

  6. Самылкина Н.Н., Островская Е.М. ЕГЭ 2011. Информатика. Тематические тренировочные задания. — М.: Эксмо, 2010.

  7. Тренировочные и диагностические работы МИОО 2010-2011 гг.




Похожие:

Тема : Системы счисления и двоичное представление информации в памяти компьютера iconТема : Системы счисления и двоичное представление информации в памяти компьютера

Тема : Системы счисления и двоичное представление информации в памяти компьютера iconТема : Кодирование чисел. Системы счисления
Запись числа 6710 в системе счисления с основанием n оканчивается на 1 и содержит 4 цифры. Укажите основание этой системы счисления...
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconТема : Кодирование чисел. Системы счисления
Запись числа 6710 в системе счисления с основанием n оканчивается на 1 и содержит 4 цифры. Укажите основание этой системы счисления...
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconТема: перевод двоичных чисел в десятичную систему счисления. Дома: 5 стр 89 читать
Записать двоичное число как сумму произведений соответствующих цифр на члены двоичного ряда
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconУрок 2 "Перевод чисел в различных системах счисления." Тип урока: урок изучения и закрепления новых знаний. Цели урока. Образовательная
Научить выполнять перевод чисел из десятичной системы счисления в восьмеричную систему счисления и из восьмеричной системы счисления...
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconВопросы к зачету
Представление чисел. Системы счисления (двоичная, восьмеричная, шестнадцатеричная и др.)
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconВариант 1 а) 618(10); б) 556(10); в) 129(10)
Перевести данное число из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconВариант 1 а) 618(10); б) 129,25(10); а) 1111011011(2); б) 10110,011(2); в) 675,2(8); г) 94,4(16)
Перевести данное число из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную системы счисления
Тема : Системы счисления и двоичное представление информации в памяти компьютера iconТема Системы счисления, Четность 8 часов

Тема : Системы счисления и двоичное представление информации в памяти компьютера icon* в задании 3 надо вставить любые символы, знаки… 1,5,9,13
...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов