Переключатели елочных гирлянд icon

Переключатели елочных гирлянд



НазваниеПереключатели елочных гирлянд
Дата конвертации09.09.2012
Размер164.58 Kb.
ТипДокументы


http://www.radiotime.narod.ru/


Переключатели елочных гирлянд.


Н
акануне Нового года многих радиолюбителей волнует вопрос: как ожи­вить новогоднюю елку? Ниже предлагаются несколько вариантов переключа­телей елочных гирлянд, различающихся по степени сложности и реализуемым световым эффектам.


Простейший переключатель поочередно коммутирует две гирлянды (рис.27). На логических элементах DD1.1, DDI.2 выполнен генератор, а на транзисторах VT1, VT2 собраны высоковольтные ключи для управления тринисторами VS1, VS2. Питание на микросхему подается от параметрического стабилизатора R4VD1 с конденсатором С1. Постоянное напряжение как для микросхемы DDI, так и для ламп гирлянд ELI, EL2 снимается с выпрямительного моста VD2.





Д
ля создания эффекта «бегущий огонь» необходимо поочередно переклю­чать не менее трех гирлянд. Схема переключателя (первый вариант), управ­ляющего тремя гирляндами, представлена на рис. 28. Основу устройства со­ставляет трехфазный мультивибратор, выполненный на трех инвертирующих логических элементах микросхемы DDI. Времязадающие цепи образованы эле­ментами Rl—R3, С1—СЗ. В любой момент на одном из выходов логических элементов имеется напряжение высокого уровня, которое открывает транзисторно-тринисторный ключ. Следовательно, одновременно светятся лампы толь­ко одной гирлянды. Поочередное переключение ламп гирлянд ELI—EL3 позволяет получить эффект «бегущий огонь».

В мультивибраторе могут работать инверторы микросхем серий К555 и К155. Во втором случае сопротивления резисторов Rl—R3 не должны превы­шать 1 кОм. Можно использовать и КМОП-микросхемы (К176, К561), при этом сопротивления времязадающих резисторов можно будет увеличить в 100... ... 1000 раз, а емкости конденсаторов С1—СЗ во столько же раз уменьшить.

Изменение частоты переключения гирлянд можно производить изменением сопротивления резисторов Rl—R3. Одновременно управлять ими затруднитель­но (строенных переменных резисторов для широкого применения промышлен­ность не выпускает). Это является недостатком данного переключателя гир­лянд.

На рис. 29 приведена схема переключателя гирлянд (второй вариант) с регулируемой скоростью движения «бегущего огня».

К
ак работает это устройство? На логических элементах DD1.1, DD1.
2 со­бран генератор прямоугольных импульсов, частота следования которых состав­ляет 0,2... 1 Гц. Импульсы поступают на вход счетчика, состоящего из двух: D-триггеров DD2.1 и DD2.2 микросхемы DD2. Благодаря наличию обратной связи между элементом DD1.3 и входом R триггера DD2.1 счетчик имеет коэф­фициент пересчета 3 и в любой момент закрыт один из транзисторов VT2— VT4. Если, допустим, закрыт VT2, то положительное напряжение с его кол­лектора будет подано на управляющий электрод тринистора VS1, тринистор откроется и загорятся лампы гирлянды EL1. Частоту переключения регулиру­ют переменным резистором R3 генератора.

В устройстве микросхемы серии К155 можно заменить соответствующими аналогами из серии К133. Транзисторы VT1—VT4 могут быть из серий КТ315, КТ3117, КТ603, КТ608 с любыми буквами. Тринисторы VS1—VS3 могут быть типов КУ201, КУ202 с буквами К—Н.

Источник, питающий микросхемы и транзисторы устройства, должен быть рассчитан на ток не менее 200 мА.

Недостатком переключателя является необходимость применения трансфор­маторного блока питания. Это обусловлено сравнительно большим током, по­требляемым микросхемами К155ЛАЗ и К155ТМ2. Существенно уменьшить ток потребления можно, применив КМОП-микросхемы, в этом случае питание мик­росхем может осуществляться от простейшего параметрического стабилизато­ра, как это сделано в переключателе двух гирлянд (см. рис. 28).

Схема переключателя трех гирлянд (третий вариант) на микросхемах се­рии К561 представлена на рис. 30, а. Генератор выполнен на логических эле­ментах DD1.1, DDI.2, а счетчик с коэффициентом пересчета 3 — на двух D-триггерах микросхемы DD2. Эпюры напряжений на выходах логических элементов показаны на рис. 30, б.


Они помогут понять логику работы устройства. Транзисторно-тринисторные ключи для управления гирляндами, выпрямитель и ста­билизатор для питания микросхем — такие же, как и в переключателе по схе­ме рис. 28 (в качестве стабилитрона VD1 в этом случае нужно использовать КС191Ж или Д814В).

У
описанных выше устройств «бегущего огня» есть общий недостаток: не­изменность логики работы. Лампы в гирляндах переключаются только в уста­новленном порядке, изменять можно лишь частоту переключения. В то же вре­мя желательно, чтобы иллюминация была как можно более разнообразной, не надоедала и не утомляла зрение. Это означает, что должна быть предусмотре­на возможность изменения не только продолжительности горения ламп, но и очередности их переключения.

На рис. 31 приведена схема переключателя гирлянд, отвечающего этим ус­ловиям.

«Сердцем» устройства является микросхема К155РУ2 — оперативное запо­минающее устройство на 16 четырехразрядных слов (под словом в данном слу­чае понимается совокупность логических нулей и единиц, например 0110, 1101 и т. д.). Как действует такая микросхема? Ее четыре входа (Dl—D4) предна­значены для подачи информации, которую нужно записать в память. Эти вхо­ды называются информационными. На четыре других входа (А1— А4) подают двоичный код адреса ячейки, которую требуется выбрать для записи или считывания информации. Эти входы называют адресными. Изменяя двоичный код на этих входах от 0000 до 1111, можно обратиться к любой из 16 ячеек. По­давая сигнал на вход W, выбирают нужный режим работы микросхемы: если на входе W напряжение низкого уровня, то производится запись в ячейку, а если напряжение высокого уровня, то можно считывать информацию, храня­щуюся в ячейках памяти микросхемы. При считывании информация поступает на выходы C1—С4. Выходы у микросхемы — с открытым коллектором, причем если в ячейке памяти записана логическая 1 то соответствующий транзистор выхода будет открыт (разумеется, в его коллекторную цепь должна быть вклю­чена нагрузка — резистор).

Таким образом, для записи числа в какую-либо ячейку памяти необходимо подать на входы Dl—D4 соответствующие логические уровни, а на входы А1— А4 — двоичный код адреса требуемой ячейки. Затем на вход W подают на­пряжение низкого уровня — и информация записана. Для считывания инфор­мации необходимо подать на вход W напряжение высокого уровня. Тогда при смене кода адреса на выходах CI—С4 будут появляться сигналы, соответствую­щие содержимому соответствующих ячеек.

Вход V служит для разрешения работы микросхемы: при подаче на него напряжения высокого уровня запись и считывание не производятся.

Рассмотрим работу переключателя по его принципиальной схеме.

С помощью кнопок SB6 «Пуск» и SB7 «Сброс» устанавливают требуемый режим работы устройства: после нажатия кнопки «Сброс» можно производить запись программы в ячейки памяти микросхемы, а после нажатия кнопки «Пуск» происходит считывание записанной программы.

При нажатии на кнопку SB7 «Сброс» RS-триггеры, собранные на логиче­ских элементах DD1.1 и DD1.2, DD1.3 и DD1.4, DD2.1 и DD2.2, DD2.3 и DD2.4, DD4.1 и DD4.2, установятся в исходное состояние, при котором на вы­ходах логических элементов DD1.1, DD1.3, DD2.1, DD2.3 и DD4.1 — напряжение низкого уровня. Поступая на вывод 12 логического элемента DD4.4, оно», запрещает работу тактового генератора, собранного на логических элементах DD4.3, DD4.4 и транзисторе VT1.

Затем с помощью кнопок SB1 — SB4 набирают двоичное слово для записи в первую ячейку памяти. Допустим нам требуется записать 0111. Для этого» нужно нажать кнопки SB2, SB3, SB4. При этом триггеры DD1.3DD1.4, DD2.1DD2.2, DD2.3DD2.4 перебросятся и зажгутся светодиоды HL2, HL3, HL4. После этого нажимают кнопку SB5 «Запись». Импульс с выхода триггера (вы­вод 3 логического элемента DD3.1) через дифференцирующую цепь C2R13 и логический элемент DD3.3 поступает на вход W микросхемы памяти DD6. Дифференцирующая цепь C2R13 и логический элемент DD3.3 работают таким образом, что после нажатия кнопки SB5 «Запись» на вход W поступает ко­роткий (длительностью несколько наносекунд) отрицательный импульс, кото­рый обеспечивает запись информации, поданной на информационные входы Dl—D4 по адресу в соответствии с двоичным кодом на адресных входах Al—А4. В момент отпускания кнопки SB5 «Запись» импульс с выхода логи­ческого элемента DD3.1 через конденсатор С1 установит в исходное состояние все RS-триггеры, в которые было предварительно записано двоичное слово. Импульс, поступивший с выхода логического элемента DD3.4 на вход С1 дво­ичного счетчика DD5, увеличит на единицу адрес (двоичный код которого сни­мается с выводов 12, 9, 8 и 11 рассматриваемой микросхемы). Заметим, что установка в исходное состояние счетчика адреса DD5 не производится (выводы 2 и 3 для обеспечения счетного режима соединены с общим проводом).

После этого кнопками SB1—SB4 набирают новое двоичное слово програм­мы, нажимают кнопку SB5 «Запись» и т. д. — пока в микросхему памяти не будет записана вся программа из 16 четырехразрядных двоичных слов. После того как программа записана, нажимают кнопку SB6 «Пуск», триггер DD4.1 DD4.2 изменяет свое состояние на противоположное, начинает работать генера­тор на логических элементах DD4.3, DD4.4, импульсы которого поступают на счетчик DD5 и изменяют код адреса ячейки. На входе W теперь все время на­ходится логическая 1, поскольку на выходе логического элемента DD4.2 — ло­гический 0, который подается на вход логического элемента DD3.3. На выходах CI—С4 микросхемы К155РУ2 появляются логические уровни, соответствующие записанной в ячейках памяти информации. Сигналы с выходов О—С4 усили­ваются транзисторными ключами VT2—VT5 и затем поступают на управляю­щие электроды тринисторов VS1—VS4. Тринисторы управляют четырьмя гирляндами ламп, условно обозначенными на схеме ELI—EL4. Допустим, что на выходе С1 микросхемы DD6 имеется логический 0. В этом случае транзистор VT2 закрыт, через резистор R21 и управляющий электрод тринистора VS1 про­текает ток, тринистор открывается и зажигает лампы гирлянды EL1. Если же на С1 логическая 1, то лампы EL1 гореть не будут.

Микросхемы устройства питаются от стабилизированного выпрямителя, со­бранного на диодном мосте VD2—VD5, стабилитроне VD1 и транзисторе VT6. Лампы гирлянд ELI—EL4 питаются выпрямленным напряжением, снимаемым с диодного моста VD6—VD9. Для отключения гирлянд служит выключатель Q2, для отключения от сети остальных элементов устройства — выключатель Q1.

В устройстве применены следующие детали. Транзисторы VT2—VT5 могут быть любыми из серий КТ3117, КТ503, КТ603, КТ608, КТ630, КТ801; VT1 — любой из серий КТ503, КТ312, КТ315, КТ316; VT6 — любой из серий КТ801, КТ807, КТ815. Тринисторы КУ201Л (VS1— VS4) можно заменить на КУ202 с буквами К—Н Диоды VD2—VD5 помимо указанных могут быть типов Д310, КД509А, КД510А; можно также использовать мостовые выпрямители КЦ402, КЦ405, КЦ407 (с любыми буквенными индексами).

Диоды КД202К (VD6—VD9) можно заменить из КД202 с буквами Л—Р, а также на Д232, Д233, Д246, Д247 с любыми буквами. Конденсаторы О, С2 — типа КЮ-7, КЮ-23, КЛС или КМ-6; СЗ-С5 - К50-6, К50-16 или К50-20. Все постоянные резисторы — типа МЛТ; переменный резистор R16 — СГЫ, СП-0,4. В устройстве можно использовать кнопки типа КМ1-1 или КМД1-1. Можно также использовать кнопки других типов (например, П2К без фикса­ции положения). Выключатели Q1 и Q2 — типа «тумблер» (ТВ2-1, ТП1-2, Т1, МТ1 и др.). Трансформатор питания Т1 выполнен на ленточном магнитопроводе ШЛ 16x20. Обмотка I содержит 2440 витков провода ПЭВ-1 0,08, обмот­ка II — 90 витков провода ПЭВ-1 0.51. Можно использовать и любые другие трансформаторы мощностью 10... 20 Вт, имеющие вторичную обмотку на на­пряжение 8... 10 В и ток 0,5... 0,7 А. Подойдут трансформаторы с ч/б телевизоров ТВК-70Л2, ТВК-110ЛМ, у которых часть витков вторичной обмотки должна быть удалена для получения нужного напряжения.

Б
ольшая часть элементов устройства смонтирована на текстолитовой плате с размерами 120X145 мм (рис. 32, а). Монтаж выполнен проводами. Транзис­тор VT6 установлен на дюралюминиевом уголке площадью около 30 см2 (он служит радиатором). Диоды VD6—VD9 и тринисторы VS1— VS4 установлены на плате без радиаторов, при этом суммарная мощность переключаемых ламп не должна превышать 500 Вт. Кнопки SB1—SB7 (типа КМ1-1) установлены на планке из текстолита (рис. 32,6), которая крепится к основной плате дву­мя винтами МЗ.


За пределами платы находятся следующие элементы: трансформатор пи­тания Т1, держатель предохранителя FU1, выключатели питания Q1 и Q2, пе­ременный резистор R16. Элементы платы соединены с ними многожильным про­водом. Провода, соединяющие аноды тринисторов VS1—VS4 с лампами EL1— EL4, припаяны непосредственно к лепесткам тринисторов.



С
ечение проводов, которыми выполнены силовые цепи, должно быть не менее 1 мм2.

Конструкция устройства произвольная. На верхней крышке корпуса долж­ны быть расположены кнопки SB1—SB7, выключатели питания Q1 и Q2, светодиоды контроля записи программы HL1—HL4, а также ручка переменного резистора R16, с помощью которого изменяют скорость переключения гирлянд. На боковой стенке корпуса установлены держатель предохранителя FU1 и гнезда для подключения гирлянд (на схеме они не показаны).

Если все детали исправны и в монтаже нет ошибок, то устройство начи­нает работать сразу. Следует отметить, что достигаемые световые эффекты во многом зависят от взаимного расположения ламп гирлянд. Наиболее распро­страненным является такое их расположение, когда за лампой первой гирлян­ды следует лампа второй гирлянды, затем третьей, четвертой и т. д. На рис. 33 показана схема такого включения ламп.

Программирование переключателя ведут следующим образом. Вначале на бумаге составляют программу, представляющую собой запись состояния ламп всех четырех гирлянд в каждом из 16 тактов работы устройства. Включенное состояние гирлянды обозначают логической 1. выключенное — логическим 0. Затем нажатием кнопки SB7 «Сброс» устанавливают микросхемы устройства в исходное состояние. После этого последовательным нажатием кнопок SB1—SB4 набирают первое слово программы, обращая внимание на зажигание светодиодов HL1—HL4, и нажимают кнопку SB5 «Запись». Так производят запись информации во все 16 ячеек микросхемы. Затем нажимают кнопку SB6 «Пуск» — переключатель переходит в рабочий режим.

При программировании следует помнить, что информация должна быть записана во все 16 ячеек памяти микросхемы, поскольку при включении питания состояние этих ячеек оказывается неопределенным.


В
табл. 3 показаны некоторые варианты программирования переключателя гирлянд для получения разнообразных световых эффектов. Логические 1 в каж­дом слове слева направо показывают, какие из кнопок SB1—SB4 соответствен­но следует нажать.

Первая и вторая программы обеспечивают эффект «бегущего огня», осталь­ные программы — более сложные эффекты. Число программ, которые можно» реализовать с помощью данного устройства, велико и это открывает простор» для фантазии оператора. Следует также помнить, что изменение скорости пе­реключения гирлянд открывает широкие возможности для получения различ­ных световых эффектов.


Суммарная мощность ламп, переключаемых устройством, может быть уве­личена до 1500 Вт, при этом диоды VD6—VD9 должны быть установлены на радиаторы площадью 40... 50 см2 каждый.

Е
сли в распоряжении радиолюбителя имеются симметричные тиристоры (симисторы) серии КУ208Г, их также можно использовать для управления лампами гирлянд. Подключать симисторы следует в соответствии со схемой представленной на рис. 34 (изображена схема только одного канала, осталь­ные— аналогичные). Сопротивления резисторов R21—R23 (см. рис. 31) в этом случае необходимо увеличить до 1 ... 3 кОм. Транзисторы КТ605А можно за­менить на КТ605Б, КТ940А, диодные мосты VD6 могут быть КЦ402, КЦ405 с буквами А, Б, Ж, И.

В
торой вариант симисторного узла коммутации представлен на рис, 35. Его отличие от предыдущего в том, что транзисторные ключи VT2—VT5 с ре­зисторами R21—R24 (см. рис. 31) заменены инвертирующими логическими элементами микросхемы DD7 (резисторы R17—R20 в схеме рис. 31 при этом сохраняются). Такое схемное решение несколько упрощает конструкцию.


Узел управления симисторами можно сделать еще более простым, если ис­пользовать электромагнитные реле (рис. 36). Обмотки реле, как видно из схе­мы, включены вместо резисторов R21—R24. В переключателе могут работать любые реле, срабатывающие от напряжения 8... 12 В при токе до 100 мА, например РЭС-10 (паспорта РС4.524.303, РС4.524.312), РЭС-15 (паспорта РС4.591.003, РС4.591.004, РС4.591.006), РЭС-47 (паспорта РФ4.500.049, РФ4.500.419); РЭС-49 (паспорт РС4.569.424). Кроме простого схемного реше­ния имеется еще одно преимущество — гальваническая развязка низковольтной части устройства от сети питания, что увеличивает безопасность пользования переключателем. Недостатком же является меньший срок службы, вызванный износом контактов реле.

И в заключение еще одна рекомендация. При выключении напряжения сети питания (даже кратковременном — несколько секунд) разрушается программа, записанная в микросхему памяти. Поэтому целесообразно предусмотреть ава­рийное переключение цепей питания микросхем устройства на питание от гальванической батареи или аккумулятора. Схема, позволяющая реализовать это, показана на рис. 37.

В нормальном режиме микросхемы переключателя питаются от выпрями­теля и ток протекает через диод VD11. Диод VD10 при этом закрыт, посколь­ку к нему приложено небольшое (0,5... 1 В) обратное напряжение. При от­ключении сетевого питания закрывается диод VD11, но открывается диод и питание микросхемы осуществляется от батареи GB1. Конденсатор С6 гасит импульсы напряжения, которые возникают в моменты переключения питания с сетевого на батарейное и наоборот, и таким образом повышает помехоустой­чивость устройства. Диоды VD10, VD11 могут быть любого типа, допускаю­щие ток не менее 300 мА (например, подойдут Д226, КД105 с любыми буква­ми). Батарея GB1 —типа 3336Л или аккумуляторы. При использовании в переключателе этого узла - следует обратить внимание на выходное напряжение выпрямителя: оно должно составлять 5... 5,5 В (но не менее 5 В), в противном случае может происхо­дить постоянная разрядка батареи GB1. Продолжительность питания от батареи зависит от ее емкости. При длительных пропаданиях напряжения в сети (более 15... 20 мин) такое аварийное питание нецелесообразно, поскольку лам­пы гирлянд все равно не работают, а новую программу можно набрать всего лишь за 3 ... 5 мин.


Источник: А.Н.Евсеев. «Электронные устройства для дома», МРБ №1202.

^




Похожие:

Переключатели елочных гирлянд iconЗвучат песни о весне, любви, женщинах. Оформление
Из елочных гирлянд сложена «восьмерка». На бумаге нарисован купидон, стреляющий в сердце, а вокруг него цветы и губы
Переключатели елочных гирлянд iconПлан совместной работы моу «Калитинская сош»
День памяти трагедии Большого Заречья. Возложение гирлянд и цветов Мемориал в Б. Заречье
Переключатели елочных гирлянд iconДокументы
1. /Переключатели кулачковые.djvu
Переключатели елочных гирлянд iconДокументы
1. /Переключатели кулачковые.djvu
Переключатели елочных гирлянд iconДокументы
1. /Литвиненко В.В.Автомобильные датчики,реле и переключатели.2004.djvu
Переключатели елочных гирлянд iconДокументы
1. /soundfxinfo/Аварии.txt
2. /soundfxinfo/Автомобили_01.txt
Переключатели елочных гирлянд iconДокументы
1. /soundfxinfo/Аварии.txt
2. /soundfxinfo/Автомобили_01.txt
Переключатели елочных гирлянд iconДокументы
1. /soundfxinfo/Аварии.txt
2. /soundfxinfo/Автомобили_01.txt
Переключатели елочных гирлянд iconДокументы
1. /soundfxinfo/Аварии.txt
2. /soundfxinfo/Автомобили_01.txt
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов