Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) icon

Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция)



НазваниеМетодика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция)
страница1/3
Дата конвертации15.12.2012
Размер0.5 Mb.
ТипУрок
  1   2   3




Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе


(лекция)План

1.Процесс работы над задачей.

1.Задача и умение её решать

3.Виды арифметических задач

4.Этапы работы над задачей

5.Уровни умения решать задачи

6.Понятие преобразования задачи

2 Методика обучения преобразованию задач

1..Подготовительная работа

2.Обучение преобразованию задач

3.Закрепление умения преобразовывать задачи

Список литературы

I. Процесс работы над задачей.


1. Задача и умение её решать


В начальном курсе обучения математике задачи играют большую роль. Что составляет содержание понятия «задача»?

В Толковом Словаре русского языка Ожегова С.И. дана такая трактовка этого понятия: «задача - это то, что требует разрешения, исполнения».

Из «Психологического словаря» мы узнаём, что «задача - цель деятельности, которая дана в определенных условиях и требует для своего использования адекватных этим условиям средств. Поиск и применение этих средств составляет процесс решения задачи».

Психолог Фридман Л.М. пишет: «Задача представляет собой требование или вопрос, на который надо найти ответ, опираясь и учитывая те условия, которые указаны в задаче».

Давыдов В.В., пишет: «...Задача - это единство цели действия и условия её достижения».

Рубинштейн С.Л. связывает понятие задачи с деятельностью. Он пишет, что, деятельность направляется непосредственно с осознаваемой целью действующего субъекта «для осуществления цели необходим учёт условий, в которых её предстоит реализовать, соотношение цели с условиями определенную задачу, которая должна быть разрешена действием. Целенаправленное человеческое действие является по существу своим решением задачи».


В учебно-педагогической литературе также встречаются разнообразные подходы к пониманию задачи. Моро М.И. дает такое определение: «Задача – это сформулированный словами вопрос, ответ на который может быть получен с помощью арифметических действий».

Артемов А. К. предлагает такое определение: «Задача - единство условий и цели».

Царева С.Е. не дает строгое определение «задачи», а относит его к числу широких общенаучных понятий и выделяет следующие основные характеристики: «Задача содержит в себе некоторую информацию о какой-либо области деятельности (условие) и требование - то, что необходимо найти, узнать, построить, доказать

Чекмарёв Я.Ф. называет задачей «вопрос, для решения которого требуется определить искомое число по данным числам и по указанной в словесной форме зависимости между данными и искомым числом».

Итак, у всех авторов определение задачи сформулировано по-разному, но все авторы сходятся в том, что задача характеризуется:

  • наличием у решателя определенной цели, стремлением получить ответ на вопрос;

  • наличием условий и требований, необходимых для решения задачи.

В своей работе мы будем рассматривать более узкий круг задач – это сюжетные задачи, у которых имеются свои специфические особенности:

  • наличие сюжета;

  • необходимость переформулировки задачи на математический язык.

Бантова М.А. характеризует сюжетную задачу как множество жизненных ситуаций, которые связаны с числами и требуют выполнения арифметических действий над ними.

Рассмотрим задачу:

«Утром в магазине было 30 кукол, в течении дня привезли еще 10. Сколько кукол продали за день, если к концу дня их осталось 12?»

  1. У нее имеется сюжет: в магазине продавались куклы.

  1. Прежде чем получить ответ в задаче, ученик должен переформулировать условие: всего было 30 кукол да еще 10, из них какое-то количество кукол продали, в результате осталось 12 кукол. Значит, продали 30+10 без 12 оставшихся. Эта переформулировка задачи помогает правильно выбрать арифметическое действие для решения задачи. Ученик составляет выражение: 30+10-12=28 (к).

Большинство авторов выделяют в задаче условие и требование. Говоря о структуре задачи, Сохор А.М. уточняет понимание условия и требования: характер внутренних отношений (связей, зависимостей) между данными и искомыми величинами. Условие задачи обычно намеренно составляется так, чтобы эти отношения не проявлялись сами по себе, в противном случае задача не была бы задачей. В формулировке любой задачи даны исходные условия и требование. Если они даны, то их уже не надо искать. Искать надо их основание, причи­ны, следствия, взаимоотношения и т. д., о которых ничего не сказано в первоначальной формулировке задачи. Они и составляют искомое.

Каждая арифметическая задача включает числа данные и искомые. Числа в задаче характеризуют количество конкретных групп предметов или значения величин. В тексте задачи указываются связи между данными числами, а также между данными и искомыми. Эти связи и определяют выбор арифметического действия.

Объекты задачи и отношения между ними составляют условие задачи. Например, в задаче: «Лида нарисовала 5 домиков, а Вова - на 4 домика больше. Сколько домиков нарисовал Вова?» объектами являются: 1) количество домиков, нарисованных Лидой (это известный объект в задаче); 2) количество домиков, нарисованных Вовой (это неизвестный объект в задаче и согласно требованию искомый). Связывает объекты отношение «больше на».

Анализ условия подводит к пониманию известных и к поискам неизвестного. Этот поиск идет в процессе решения задачи. Детям надо объяснить, что решать задачу - это значит понять и рассказать, какие действия нужно выполнить над данными в ней числами, чтобы получить ответ.

Основываясь на вышеизложенной трактовке понятия «задача» методисты определяют, что значит решить задачу:

«Решить задачу в широком смысле - значит раскрыть связи между данными и искомым, заданные условием задачи, на основе чего выбрать, а затем выполнить арифметические действия и дать ответ на вопрос задачи», - так считает Бантова М.А.

Моро М.И. раскрывает смысл требования «решить арифметическую задачу» по другому - «объяснить (рассказать), какие действия нужно выполнить над данными в ней числами, чтобы получить число, которое нужно узнать».

Попова Н.С. считает, что «решить задачу – это значит произвести над её числовыми данными арифметические действия, которые вытекают из условия задачи и дают ответ на её вопрос».

Царева С.Е. считает, что следует различать понятия «решить задачу» и «обучать решению задачи». Очень важно понимать это различие.

В узком смысле «решить задачу - это значит ответить на ее вопрос так, чтобы ответ соответствовал условию задачи» - пишет Царёва С.Е.

«Обучение решению задач – это специально организованное взаимодействие учителя и учащихся, цель которого - формирование у учащихся умения решать задачи».

Мы согласны с мнением Царёвой С.Е. и в своей работе будем придерживаться её точки зрения.

Отождествление двух понятий "решение" и "обучение решению задач" приводит к ориентации учителя на получение ответов на вопросы задач, а не на формирование умения решать задачи, и направленности деятельности учащихся на решение конкретной задачи, овладение способом её решения.

По этой причине до сих пор для большинства учащихся главное при решении задач найти конечный результат, выраженный каким либо числом.

Для большинства учителей обучение решению задач однотипно: оно сводится к показу образца, разучиванию способов решения, доведения способа решения задач до автоматизма. До сих пор среди некоторых учителей распространено мнение, что любая задача, включенная в урок, должна быть обязательно решена на уроке, решение доведено до конца и записано соответствующим образом.

Такая работа и приводит учащихся к формальному, механическому решению задач. Итак, из всего вышесказанного можно сделать следующий вывод: дети решают: "выполняют действия - умственные, предметные, графические, речевые, и так далее, направленные на достижение цели: найти ответ на вопрос задачи, соответствующий условию" , но часто не обучаются решению задачи..


^ 2. Виды арифметических задач.


Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные. Задача, для решения которой надо выполнить один раз арифметическое действие, называется простой. Задача, для решения которой надо выполнить несколько действий называется составной.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

Рассмотрим в качестве примера задачу: «В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько детей дежурило в школе?»

Эта задача включает две простых:

В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько мальчиков дежурило в школе?

В школе дежурили 8 девочек и 10 мальчиков. Сколько всего детей дежурило в школе?

Как видим, число, которое было искомым в первой задаче, стало данным во второй.

Последовательное решение этих задач является решением составной задачи: 1)8 + 2=10; 2)8+10=18.

Методика работы с каждым новым видом составных задач ведется в соответствии с тремя ступенями: подготовительная, ознакомительная и закрепление.

Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время.

В решении составной задачи появилось существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которыми вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи. Для того, чтобы научить учащихся правильно решать составные задачи, необходимо использовать разные виды текстов задач.

Тексты задач могут различаться по разным основаниям. Рассмотрим их.

  1. По структуре текста задачи.

Необходима специальная работа по выделению структурных элементов задачи в текстах различной конструкции. Остановимся на этом подробнее.

В каждой задаче можно выделить условие и требование. Обозначим схематически условие О, а требование . Тогда задача может иметь одну из конструкций: 1, 2 или 3:

1. О :

  1. Дети пошли в поход. Было 13 мальчиков и 10 девочек, позже к ним присоединились еще 5 детей. Сколько детей пошло в поход?

2) В один бидон вмещается 32 л воды, а во второй - на 12 л меньше. Найди емкость двух бидонов вместе.

2. О:

3) Сколько марок подарил Петя, если Сереже он подарил 8 марок, а Коле на 5 марок больше?

4) Сколько пассажиров совершало полет, если в самолете было 25 женщин, мужчин на 15 человек больше, чем женщин, а детей на 10 человек меньше, чем женщин?

3. О О:

  1. Мама испекла 20 пирожков. Сколько пирожков осталось после того, как за ужином папа съел пирожков, а сын 5 пирожков?

  2. Когда отцу было 40 лет, сыну было 12. Найди возраст сына, когда отцу будет 52 года.

Очевидно, что ученику легче всего выделить условие и требование задачи в первом случае. При чтении задачи он опирается на внешние признаки: сначала формулируется условие, в последнем предложении высказывается требование. Если мы хотим научить выделять струк­турные элементы задачи и при этом ориентироваться не на внешние признаки, а на смысл, то необходимо предлагать тексты задач различной конструкции. При этом важно, чтобы требование было представлено как в виде вопросительного, так и в виде повествовательного предложения, например:

  1. Для отделки одной шторы требуется 8 м тесьмы. Найди длину мотка тесьмы, которая необходима для отделки трех пар таких штор.

  1. По записи данных.

В большинстве приведенных примеров необходимые данные записаны с помощью цифр. Выделяя условие и требование, ученики часто только на них и ориентируются. Увидев числа, просто не читают текст, сразу пытаются манипулировать числами. Вот поэтому полезно предлагать тексты задач, где необходимые данные фиксируются разными способами: с помощью цифр, букв, сказочных чисел, словом и т. д. В таком случае ученик будет вынужден внимательно читать задачу, находить связи между данными величинами и искомым.

Приведем примеры таких задач.

  • На горке каталось □ детей. Когда к ним подошло * мальчиков и несколько девочек, то стало О детей. Сколько девочек подошло?

При использовании таких задач видно, на что опирается ребенок при решении задачи: на числовые данные или на смысл задачи. Решение этой задачи может быть записано следующим обра­зом:

Подошло (О - □ - *) девочек.

  1. По наличию лишних или недостающих данных.

Для того чтобы научить ученика устанавливать взаимосвязь между иско­мым и данными, очень полезно предла­гать задачи с лишними и недостающими данными, а также задачи, не имеющие по разным причинам решения.

Приведем примеры таких задач.

  1. На первой полке лежало 30 книг, на второй - 40, а на третьей на 5 книг
    больше, чем на второй. Сколько книг лежало на третьей полке?

Эта задача с лишними данными. Для ее решения нет необходимости знать количество книг, лежащих на первой полке. Для того чтобы правильно ее решить, ученик должен установить, какие величины связаны между собой, а какие нет. Наблюдения показывают, что те дети, которые невнимательно читают задачу, ориентируются только на числовые данные, решают ее неправильно, дают ответ: 25 книг. Они не видят, какие величины сравниваются, не видят необходимое числовое данное - 40 книг на второй полке.

  1. Сколько груш росло в саду, если их было на 35 деревьев больше, чем яблонь?

Эта задача с недостающими данными. Анализируя текст, ученик должен сказать, что она не имеет решения, так как в ней не хватает данных. Будет очень хорошо, если он сможет указать недоста­ющее данное, например количество яблонь.

  1. Маша в саду собирала ягоды. Она набрала 2 кг смородины и 5 стаканов малины. Сколько ягод собрала Маша?

Данную задачу решить нельзя, так как масса ягод измерена разными мерками, над указанными числами в таком случае производить арифметические действия нельзя.

Такого вида задачи приучают не только внимательно читать текст задачи, но выявлять уровень знаний о величи­нах.

  1. В автобусе ехало 37 человек. Сколько человек осталось в автобусе после того, как на остановке вышло 40 человек?

Данную задачу также решить нельзя, так как предложенные числовые данные не соответствуют смыслу задачи.

Примеры текстов задач, которые мы привели, помогут убедить ученика в необходимости анализа текста задачи.

Не успев прочитать задачу, ученики начинают выполнять какие-то арифметические действия с данными числами. Это становится причиной ошибок. Поэтому необходимо научить ученика не торопиться с выбором арифметического действия. Он должен понять, насколько важно внимательно читать текст задачи и может быть не один раз. Для формирования этого умения необходимы специальные зада­ния. Одним из важнейших таких заданий является работа по преобразованию задачи.


^ 3. Этапы работы над задачей


Процесс решения задачи - это переход от условия задачи к ответу на ее вопрос.

Первые представления о процессе решения задач создаются у учащихся в первом классе. Ко второму классу они уже знают, что решение любой арифметической задачи состоит из следующих этапов работы:

  1. Усвоение содержания текста.

Цель:

    • научить понимать ситуацию в целом;

    • установить смысл каждого слова, словосочетания, предложения;

    • приучиться читать задачу;

    • выделить структурные элементы;

    • установить взаимосвязь между искомым и данными;

  1. Поиск решения задач.

Цель:

  • научить ученика задавать самому себе систему вопросов (от вопроса к условию, от условия к вопросу и др.), после ответа на которые он сможет найти решение;

  • составить план решения;

3. Оформление решения.

Цель:

  • записать решение так, чтобы оно было понятно читающему;

4. Проверка решения.

Цель:

  • убедиться в правильности найденного решения.

  1. Работа с решенной задачей.

Цель:

    • организовать деятельность ученика так, чтобы он осознал свое продвижение от незнания к знанию;

Царева С.Е. опираясь на диссертацию Лебединцевой В.А., предлагает несколько другой подход к выделению этапов решения задачи:

  1. Восприятие и осмысление задачи.

Цель:

  • понять задачу, т.е. установить смысл каждого слова, словосочетания, предложения;

  • выделить множества, отношения, величины, зависимости, известные и неизвестные, искомое, требование.

  1. Поиск плана решения.

Цель:

  • составить план решения.

  1. Выполнение плана решения.

Цель:

    • найти ответ на вопрос задачи (выполнить требование задачи);

4. Проверка решения.

Цель:

    • установить, соответствует ли процесс и результат решения образцу правильного решения;

5. Формировка ответа на вопросы задачи (выводы о выполнении требования).

Цель:

    • дать ответ на вопрос задачи (подтвердить факт выполнения требования задачи);

  1. Исследование решения.

Цель:

    • установить, является ли данное решение (результат решения) единственным или возможны и другие результаты (ответы на вопрос задачи), удовлетворяющие условию задачи;

Более в сокращенном виде видит этапы работы над задачей Бантова М.А.

              1. Ознакомление с содержанием задачи.

Цель: прочитать задачу; представить жизненную ситуацию, отраженную в задаче;

              1. Поиск решения задачи.

Цель: выделить величины, входящие в задачу, данные и искомые числа; установить связи между данными и искомым; выбрать соответствующие арифметические действия.

              1. Выполнение решения задачи.

Цель: записать решение.

              1. Проверка решения задачи.

Цель: установить правильно оно или ошибочно.

Представленные выше различные подходы к выделению этапов работы над задачей имеют много общего. Во-первых, каждый этап решения есть сложное умственное действие, входящее в состав еще более сложного - решения задачи. Во-вторых, работа над задачей начинается и у Бантовой М.А., и у Туркиной В.М, и у Царевой С.Е., с прочтения, понимания задачи и выделения ее структурных элементов, т.к. именно невнимательно прочитанная задача, отсутствие анализа ее текста становятся причиной ошибок в процессе решения задач.

Поэтому при работе с задачей важно уделить как можно больше внимания 1 этапу решения задачи - усвоению содержания ее текста.

Главная цель ученика на 1 этапе - понять задачу. Методисты предлагают разные приемы работы на этом этапе. Бантова М.А., Царева С.Е. предлагают следующие приемы первичного анализа:

1. Представление жизненной ситуации, описанной в задаче, мысленное участие в ней. (Можно предложить учащимся после чтения задачи нарисовать словесную картинку).

2. Разбиение текста на смысловые части и выбор необходимой для поиска решения. (Можно предложить учащимся определить, правильно ли выделены части и повторить текст задач по частям).

3. Переформулировка текста задачи; замена описания данной в ней ситуации другой, сохраняющей все отношении и зависимости, но более точно их выражающие.

Анализ текста задачи неразрывно связан с этапом поиска решения.

Анализ задачи проводится до тех пор, пока не возникнет идея о плане решения, который позволяет нам рассуждать: от вопроса к данным и от данных к вопросу.

Для поиска решения Бантова М.А., Царева С.Е. предлагают использовать краткую запись.

В краткой записи задачи отображаются объекты, числовые данные и связи между ними. Таким образом, краткая запись фиксирует в удобообразной форме величины, числа данные и искомые, а также некоторые слова, показывающие, о чём говорится в задаче: «было», «положим», «стало» и т.п., и слова, обозначающие отношения: «больше», «меньше», «одинаковая» и т.п.

Краткая запись условия задачи помогает устранить типичные ошибки, не дает возможности поверхностного прочтения текста задачи и возможности упустить соотношения между данными.

Краткая запись задачи только в первое время несколько трудна учащимся, но учитель постоянно им помогает наводящими вопросами: Какие слова нужны для краткой записи? Какие числа надо вписать в краткое условие? Какие обозначения будем использовать?

Для того, чтобы помочь ученикам, учитель пользуется наглядностью: предметной, а затем абстрактным вариантом, а также использует краткую запись, которая подразделяется на предметную и схематическую.

Предметная краткая запись - это использование предметов для изображения ситуации, описанной в задаче. Предметная иллюстрация помогает создать яркое представление той жизненной ситуации, которая описывается в задаче. Для иллюстрации задачи используются либо предметы, либо рисунки предметов, о которых идет речь в задаче: с их помощью иллюстрируется конкретное содержание задачи.

Например: У Коли 5 тетрадей, а у Миши на 4 тетради больше. Сколько тетрадей у обоих мальчиков?

Выходят 2 мальчика, один из них берет 5 тетрадей, другой берет столько же тетрадей, сколько и первый, а затем еще 4. Такое воспроизведение уточняет представление детей, которое возникло при восприятии задачи. Но если мальчики будут держать тетради в руках и не уберут их, то у ребят не вызовет сложности над выбором действия, им не надо будет мысленно представлять ситуацию, а можно просто путем пересчета сосчитать тетради.

Если использовать предметное моделирование длительное время как основной способ, то возникнут отрицательные последствия:

  • ученики не смогут построить мысленную модель без этой опоры;

  • у учеников не будет происходить развитие внутреннего плана действия;

Схематичная краткая запись подразделяется на несколько видов:

а) со словами.

Например: Девочка нашла в лесу 10 белых грибов, а подосиновиков на 7 больше. Сколько всего грибов нашла в лесу девочка?

Белые – 10г.

Подосиновики - ? на 7г. больше.

б) таблица.

Если в задаче используется три величины и более, то удобнее применять табличную форму краткой записи. При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей, между величинами: на одной строке записываются соответствующие значения различных величин, а значения одной величины записываются одно под другим. Искомое число обозначается вопросительным знаком.

Например: «В четырех одинаковых коробках 48 карандашей. Сколько карандашей в одной коробке?»

Таблица выглядит так:


Количество карандашей в 1 коробке

Количество коробок

Общее число карандашей

? одинаковое

4

48


При первичном знакомстве с такой задачей таблица мало чем помогает представить математическую ситуацию и выбрать нужное действие. Но если учащиеся хорошо усвоили взаимосвязь пропорциональных величин, то таблица будет очень удобна для изображения задачной ситуации.

в) графическая модель (рисунки, чертежи).

Можно применять самые простейшие рисунки, в виде кружков, квадратов, треугольников, точек, полосок и т.д., обозначающих те предметы, о которых говорится в задаче.

Например: На блюде лежало 15 яблок: красных, зеленых и желтых. Красных – 5, желтых столько же, да еще одно. Сколько зеленых яблок лежало на блюде?

- Сколько яблок лежало на блюде? (15)

- Нарисуем 15 кружков. Каждый кружок означает одно яблоко (красное, желтое или зеленое), лежащее на блюде.

- Сколько лежало красных яблок? (5).

- Значит, из нарисованных 15 кружков закрасим красным карандашом 5 кружков.

- Каждый закрашенный кружок означает одно красное яблоко. Остальные яблоки – зеленые и желтые. Тогда о зеленых и желтых яблоках можно сказать, что их 15 без 5, т.е. 15-5.

Решение: 15-5=10 (я.) желтых и зеленых

- Сколько лежало желтых яблок? (столько же, сколько и красных, да еще одно).

- Значит, из незакрашенных кружков закрасим желтым карандашом 5 кружков да еще один.

- Каждый закрашенный кружок означает одно желтое яблоко. Остальные яблоки – зеленые. Тогда о зеленых яблоках можно сказать, что их 10 без 5 и 1, т.е. 10-5-1.

Решение: 10-5-1=4 (я.) зеленых.

Ответ: 4 зеленых яблока

При таком графическом изображении ученики пользуются пересчетом, как и при предметном моделировании. Такое графическое моделирование невозможно использовать при больших числовых данных. Поэтому лучше использовать такое графическое средство как чертеж. Иллюстрацию в виде чертежа целесообразно использовать при решении задач, в которых даны отношения значений величин (больше, меньше, столько же), а также при решении задач, связанных с движением. При этом надо соблюдать указанные в условии отношения: большее расстояние изображать большим отрезком. Чертеж наглядно иллюстрирует отношение значений величин, а в задачах на движение схематически изображает соответствующую ситуацию. Одно из чисел данных в задаче (число детей, число метров в материи) изображают отрезком и, используя данные в задаче соотношения этого числа и других чисел, изображают эти числа (в 2 раза больше, на 4 кг меньше) соответствующим отрезком.

Например, для рассмотренной задачи про яблоки, можно выполнить такой чертеж:

Иллюстрация только тогда поможет ученикам найти решение, когда её выполняют сами дети, поскольку только в этом случае они будут анализировать задачу сами.

Дети могут установить связи между данными и искомым и выбрать соответствующее арифметическое действие только с помощью учителя. В этом случае учитель проводит специальную беседу, которая называется разбором задачи.

Рассуждение можно строить двумя способами: идти от вопроса задачи к числовым данным или же от числовых данных идти к вопросу.

Чаще следует использовать первый способ рассуждения, так как при этом ученик должен иметь в виду не одно выделенное действие, а все решение в целом. При использовании второго способа разбора учитель прямо подводит их к выбору каждого действия. Кроме того, такое рассуждение может привести к выбору «лишних действий».

Разбор составной задачи заканчивается составлением плана решения – это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.

Третий этап деятельности учащихся по решению задачи – оформление решения. Ученики справляются с этим этапом достаточно хорошо. Если при разборе задачи и поиске решения использовался чертеж, то ошибок в записи решения бывает очень мало.

При решении некоторых видов задач необходима проверка решения. Бантова М.И., Царева С.Е., выделяют следующие виды проверок:

  1. Прикидка ответа.

Применение этого способа проверки заключается в следующем: до решения или после него устанавливают, какое число получится в результате, большее или меньшее, чем данное в условии.

  1. Решение задачи другим способом.

Этот способ проверки интересен тем, что является одним из средств повышения интереса к математике.

Царева С.Е. считает, что применение метода поиска нового способа решения - средство развития познавательного интереса, умения отстаивать свою точку зрения.

  1. Установление соответствия между числами полученными и данными.

Обосновать правильность решения задачи можно с помощью арифметических действий и логических рассуждений о том, что, если считать полученный результат верным, то все отношения и зависимости между данными и искомыми задачи будут выполнены.

  1. Составление и решение обратной задачи.

Составление обратной задачи и ее решение иногда является единственным способом проверки.

Этот вид проверки делает прочными знания об обратных связях.

Заключительным этапом в работе над задачей является работа после решения задачи. В методической литературе опубликовано немало статей (Царева С.В., Шикова Р.Н.), где описаны виды дополнительной работы над уже решенной задачей. На практике можно увидеть эффективность этих видов работы. К сожалению, пользоваться этими видами работы приходится мало, так как не разработана методика работы на этом этапе.

Многие авторы и методисты уделяют много внимания последнему этапу: работе с задачей после ее решения.

В методической литературе даются разные виды такой работы, но вот как научить детей преобразовывать задачи не говориться.

  1   2   3




Похожие:

Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconАнализ предметной Недели математики в начальной школе. На основании плана работы начальной школы с 04. 04. 11 по 08. 04. 11 год
На основании плана работы начальной школы с 04. 04. 11 по 08. 04. 11 года в начальной школе была проведена предметная Неделя математики....
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconЭкзаменационные вопросы по дисциплине «Методика преподавания математики в начальной школе» Методика ознакомления учащихся начальных классов с правилом деления суммы на число
Примеры явных и неявных определений понятий, изучаемых в начальном курсе математики
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconПроект по теме: «Национально-региональный компонент на уроках математики в начальной школе»
Знакомство детей с миром природы с изучения родного края, воспитывать у детей «инстинкт местности»
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconМетодика проведения устного счета на уроках математики
Они надеются, что учитель их пропустит, не спросит. Для более эффективной работы при устном счете следует использовать более разнообразные...
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) icon2. Описание экспериментальной работы по проведению нестандартных уроков математики, как эффективного средства по усвоению нового материала в начальной школе
С целью проверки гипотезы, выдвинутой нами, необходимо проведение формирующего эксперимента
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconИспользование информационно-коммуникационных технологий на уроках в начальной школе

Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconУроках математики между начальной и основной школой как условие успешности обучения
Часто учителя математики 5 классов сетуют на плохую математическую подготовку выпускников начальных классов, отмечая неумение самостоятельно...
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconКолмычек татьяна николаевна
Применение информационно коммуникативных технологий на уроках в начальной школе
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconСеминар учителей начальной школы по теме: «Развитие системы воспитательной работы в лицее в процессе преподавания литературного чтения в начальной школе»
«Развитие системы воспитательной работы в лицее в процессе преподавания литературного чтения в начальной школе»
Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе (лекция) iconПрограмма мониторинга уровня сформированности универсальных учебных действий в начальной школе. Краткая аннотация
Тация: программа составлена на основе методического пособия под ред. А. Г. Асмолова «Как проектировать универсальные учебные действия...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов