Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) icon

Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II)



НазваниеЭтот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II)
страница1/6
Дата конвертации15.09.2012
Размер0.99 Mb.
ТипДокументы
  1   2   3   4   5   6

А.А.Гришаев

ЭТОТ «ЦИФРОВОЙ» ФИЗИЧЕСКИЙ МИР



В 5-ти разделах с Дополнением


Раздел 5. ЭЛЕКТРИЧЕСТВО И СТРУКТУРЫ ВЕЩЕСТВА (II)




5.1 Зарядовые разбалансы в атомарных связках «протон-электрон».

Считается, что суммарный электрический заряд атома, имеющего в своём составе равные количества протонов и электронов, тождественно равен нулю. Но это утверждение, как мы постараемся показать, верно не всегда. Как это ни парадоксально, некоторые атомарные связки «протон-электрон» (4.9) способны проимитировать ненулевой эффективный заряд – в интервале от –e до +e, где e – элементарный электрический заряд. Это парадоксальное свойство играет, на наш взгляд, ключевую роль в физике связанных зарядов.

До сих пор, говоря об атомарных связках «протон-электрон», мы молчаливо полагали, что у них сменяющие друг друга пребывания в бытии заряда протона и заряда электрона длятся одинаковые промежутки времени – а именно, полпериода связующих прерываний. Скважность таких прерываний равна 50%, и если эта величина оставалась бы неизменной, то на интервалах времени, много больших периода прерываний, связка «протон-электрон» вела бы себя как электрически нейтральная. Но, на наш взгляд, возможность вариации этой скважности является дополнительной степенью свободы у связки «протон-электрон». При сдвиге скважности в ту или иную сторону от центрального значения, возникает зарядовый разбаланс [Г1], обусловленный доминированием пребывания в бытии заряда того или иного знака. Излагаемый подход схематически проиллюстрирован на Рис.5.1.1, где для каждого периода прерываний, связующих протон и электрон, указана соответствующая скважность, в процентах.




Рис.5.1.1


Как можно видеть, атом, имеющий в своём составе равные количества носителей элементарных зарядов обоих знаков, при статическом зарядовом разбалансе даже в одной своей связке «протон-электрон», способен вести себя как обладатель ненулевого эффективного заряда – на интервалах времени, больших по сравнению с периодом прерываний, который для внешних атомарных электронов составляет 10-15 с.

Первое, что модель зарядовых разбалансов помогает нам прояснить – это природа тех энергий возбуждения в атоме, которые попадают в континуум между квантовыми уровнями. Квантовая теория отказывает в существовании этому континууму – полагая, что энергия возбуждения может соответствовать только дискретным стационарным уровням. Но, как мы уже излагали выше (3.1), этот подход квантовой теории, с точки зрения практики, избыточно категоричен.
Атомные спектральные линии соответствуют резонансным переходам, с одного квантового уровня на другой – происходящим с наибольшими вероятностями – но квантовые переходы с участием промежуточного континуума, несомненно, тоже происходят (3.1). Поэтому адекватные представления об атомных структурах должны пояснять расклад энергий для ситуаций, при которых энергия связи атомарного электрона соответствует некоторому значению из континуума между квантовыми уровнями.

Как мы излагали выше (4.9), размер атомарной связки «протон-электрон», которая имеет энергию связи, соответствующую тому или иному возбуждённому стационарному состоянию, равен её размеру в основном состоянии. Иными словами, радиус атома, при нахождении электрона на любом квантовом уровне энергии, один и тот же – и равен радиусу в основном состоянии. Логично допустить, что и при наличии у электрона энергии, попадающей в континуум между квантовыми уровнями, радиус атома остаётся прежним. Тогда, рассмотрим случай наличия у связки «протон-электрон» энергии возбуждения, попадающей в континуум между основным и первым стационарным уровнями. Если размер связки «протон-электрон» при этом равен размеру в основном состоянии, то, согласно (4.9.1), и частота атомных прерываний такова же, как в основном состоянии, и, соответственно, собственные энергии протона и электрона в этой связке таковы же, как в основном состоянии. Но поскольку энергия их связи при этом уменьшена на величину энергии возбуждения, то нам придётся допустить, что энергия возбуждения – это какая-то особая форма энергии, о которой мы не говорили прежде. Мы полагаем, что это – энергия колебаний зарядового разбаланса, причём эти колебания обусловлены колебаниями скважности у прерываний, связующих протон и электрон. Сразу заметим, что у этих колебаний скважности могут варьироваться два параметра: размах и частота. Соответственно, и энергия этих колебаний скважности должна зависеть, вообще говоря, от тех же двух параметров – как и энергия классических осцилляций. Однако, при поглощении атомом нерезонансного кванта света и соответствующем попадании энергии возбуждения атома в междууровневый континуум, энергия этого кванта должна быть беспроблемно превращаема в энергию колебаний зарядового разбаланса, и обратно. Поскольку энергия кванта света зависит только от частоты, логично допустить, что беспроблемная превращаемость имеет место, если энергия колебаний зарядового разбаланса точно так же зависит только от частоты. Такое возможно, если, какова бы ни была энергия поглощённого нерезонансного кванта, размах результирующих колебаний зарядового разбаланса является одним и тем же – и мы полагаем, что он при этом максимален. Т.е., мы полагаем, что энергия hf нерезонансного кванта света равна энергии колебаний зарядового разбаланса, происходящих с частотой f и с полным размахом изменения скважности попеременных прерываний: от 0% до 100%. При таком раскладе вырисовывается, на наш взгляд, простейшая «сшивка» логики «цифрового» микромира и «аналогового» макромира. Действительно, энергии квантовых пульсаций, т.е. неопределённо долгой цепочки мгновенных смен двух состояний, ставится в соответствие энергия неопределённо долгих гармонических колебаний – причём, одинаковые приращения этих двух энергий вызываются одинаковыми приращениями их частот!

Такой подход позволяет прояснить вопрос, который может показаться риторическим – зачем в атоме требуются возбуждённые стационарные уровни энергии. Но неспроста же они организованы! Пусть связка «протон-электрон», находившаяся в основном состоянии (ground state), испытывает нерезонансное возбуждение, энергия которого попадает в континуум над основным уровнем. При этом расклад энергий таков: собственные энергии протона и электрона те же, что и в основном состоянии, а энергия их связи уменьшена на величину энергии возбуждения, т.е. на величину энергии колебаний зарядового разбаланса – с полным размахом. Тогда, как можно видеть, частота этих колебаний зарядового разбаланса имеет ограничение сверху. Действительно, на один период T0 связующих прерываний всегда приходится лишь одно значение скважности, и минимальное число этих периодов, на протяжении которых скважность может измениться с полным размахом, равно двум: на одном периоде скважность равна 0%, а на другом – 100%. Таким образом, частота колебаний зарядового разбаланса, равная половине частоты связующих прерываний, является максимально возможной – при этом энергия возбуждения равна половине энергии связи в основном состоянии. Картина электронных пульсаций в связке «протон-электрон» для этого случая приведена на левой части Рис.5.1.2.




Рис.5.1.2 Высокочастотное заполнение – электронные пульсации.


Поразительным образом, эта картина идентична картине, имеющей место при половинной частоте связующих прерываний и отсутствии колебаний зарядового разбаланса – т.е. при чистом случае вдвое меньшей энергии связи (правая часть Рис.5.1.2). Такое совпадение мы расцениваем как свидетельство о самосогласованности и правдоподобности нашей модели.

Теперь заметим: ограниченность частоты колебаний зарядового разбаланса значением, равным половине частоты связующих прерываний, означает, что у связки «протон-электрон», без принятия специальных мер, половина возможного диапазона энергий связи была бы недоступна при возбуждении тем или иным способом. Это существенно ограничивало бы возможности свободного превращения энергии из одних форм в другие. Устраняющие этот недостаток специальные меры и заключаются, на наш взгляд, в устроении систем стационарных квантовых уровней у атомарных связок «протон-электрон». Так, при пребывании связки «на первом возбуждённом уровне», энергия связи равна энергии ионизации с этого уровня, а колебания зарядового разбаланса отсутствуют. При нерезонансном возбуждении, энергия которого попадает в континуум над первым возбуждённым уровнем, собственные энергии протона и электрона те же, что и на этом уровне, а энергия возбуждения, т.е. энергия колебаний зарядового разбаланса, отсчитывается с нуля, соответствующего этому уровню. Опять же, эта энергия не может превысить половину энергии ионизации с этого уровня. Чтобы была уменьшена остающаяся «мёртвая зона» энергий связи, требуется следующий стационарный уровень – и так далее. Таким образом, наша модель объясняет – по крайней мере, качественно – назначение возбуждённых стационарных уровней энергии в атоме, а также характерное сгущение этих уровней по мере их приближения к уровню ионизации.

По логике вышеизложенного, при приобретении невозбуждённой атомарной связкой «протон-электрон» кванта нерезонансного возбуждения, соответствующего континууму, скажем, между первым и вторым возбуждёнными стационарными уровнями, энергия этого кванта дробится на две формы: часть её идёт на перевод связки на первый стационарный уровень, а остаток идёт на энергию возбуждения в форме колебаний скважности зарядового разбаланса. Таким дроблением энергии легко объясняется феномен флуоресценции при облучении вещества нерезонансным ультрафиолетом – когда высвечивание происходит при «скатывании» электрона не в основное состояние, а на ближайший нижерасположенный стационарный уровень.

Как можно видеть, зарядовые разбалансы, допуская сшивку «цифровой» и «аналоговой» логики, обеспечивают универсальность квантового электромагнитного взаимодействия – делая возможным поглощение-излучение атомами нерезонансных квантов. Но мы полагаем, что зарядовые разбалансы, имея «аналоговую» природу, способны обеспечивать также чисто волновое электромагнитное взаимодействие – т.е. участвовать в передаче радиоволн (5.3). При этом, конечно, энергия колебаний зарядовых разбалансов должна зависеть, как и энергия классических осцилляций, от двух параметров – от частоты и от размаха. Мы полагаем, что связка «протон-электрон» может в одно и то же время испытывать как «квантовые» колебания зарядового разбаланса, с полным размахом, так и «классические» колебания зарядового разбаланса – с частотой и размахом, определяемыми параметрами вынуждающего воздействия. При этом синусоиды «квантовых» и «классических» колебаний зарядового разбаланса математически складываются – но с ограничениями снизу и сверху, т.к. скважность не может быть меньше 0% и больше 100%.


^ 5.2 Зарядовые разбалансы в неполярных диэлектриках.

Неполярными называются диэлектрики, молекулы которых не обладают самостоятельным дипольным моментом. Согласно традиционному подходу [П1,Т1,К1], в постоянном однородном электрическом поле происходит поляризация таких молекул, т.е. пространственное разделение центров положительного и отрицательного зарядов молекулы. Как полагают, именно благодаря тому, что индуцированные таким образом дипольные моменты молекул ориентируются против внешнего поля, результирующее поле в диэлектрике оказывается ослабленным в  раз, где  - диэлектрическая проницаемость. Причём,  определяется величиной вектора поляризации в диэлектрике, равного сумме элементарных молекулярных диполей во всём объёме диэлектрика [Т1,К1].

Такой подход, на наш взгляд, не выдерживает критики даже на уровне элементарных качественных соображений. Пусть диэлектрическая прокладка вносится в промежуток между пластинами заряженного плоского конденсатора. Обратим внимание: здесь «внешнее поле» сформировано благодаря макроскопическому разделению противоположных зарядов в пространстве – что подчёркивается выражением E=U/d, где E – напряжённость электрического поля, U – разность потенциалов, d – расстояние, на котором создана эта разность потенциалов. Такое поле может быть ослаблено инверсным макроскопическим же разделением зарядов, но никак не микроскопическими разделениями зарядов внутри диэлектрика, при которых средняя объёмная плотность заряда остаётся нулевой. Можно убедиться в том, что ослабление внешнего поля внутри прокладки, благодаря выстраиванию в ней векторов диполей в одном направлении, могло бы иметь место лишь за счёт того, что на поверхностях прокладки получалась бы ненулевая поверхностная плотность заряда – отрицательная со стороны положительной пластины конденсатора, и наоборот. При этом весь эффект ослабления внешнего поля был бы обеспечен частичной нейтрализацией зарядов на пластинах конденсатора поверхностными зарядами на диэлектрике. И тогда не имела бы значения ориентация диполей в подавляющей части объёма диэлектрика – за вычетом нескольких поверхностных молекулярных слоёв. Значит, для ослабления внешнего поля в диэлектрике, не требуется индуцировать и ориентировать диполи во всём его объёме.

Этот качественный вывод подкрепляется ещё более впечатляющими количественными оценками расстояний, на которые, согласно традиционному подходу, должны быть разделены заряды в индуцированных молекулярных диполях. Комбинируя уравнение Клаузиуса-Мосотти (вид которого в системе СИ дан, например, в [К1]) и выражение для поляризуемости молекул (там же), получаем для искомого расстояния выражение

, (5.2.1)

где M - масса молекулы,  - плотность диэлектрической среды, 0 - диэлектрическая проницаемость вакуума, E - напряжённость внешнего поля, e - элементарный электрический заряд. Считается [Ф1], что уравнение Клаузиуса-Мосотти хорошо работает для газов, в том числе при нормальных условиях; рассмотрим случай молекулярного кислорода, для которого =1.00055 [Е1], M=321.6710-27 кг, =1.429 кг/м3 [Е1]. Тогда из (5.2.1) следует, что, при E=5104 В/м, разделение зарядов в индуцированных молекулярных диполях должно составлять 0.0057 Ангстрем. Примем эту цифру в качестве усреднённой, поскольку у двухатомных молекул, образованных с помощью ковалентных связей – к тому же, двойных – поляризуемость должна иметь ярко выраженную угловую анизотропию по отношению к оси молекулы. И заметим, что при подходе Клаузиуса-Мосотти игнорируются хаотически возникающие молекулярные диполи – из-за соударений молекул газа при их тепловом движении. Для грубой оценки характерного теплового разделения зарядов можно аппроксимировать зависимость «энергия-расстояние» квадратичной параболой – с параметрами, соответствующими молекулярной потенциальной яме. Характерные масштабы здесь таковы: молекула диссоциирует при изменении её размера на 1 Ангстрем. Тогда, для случая типичной энергии диссоциации 5 эВ, характерной тепловой энергии kT (при T=300оК) соответствовало бы хаотическое тепловое разделение зарядов в молекуле на характерную величину 0.072 Ангстрем – которая на порядок превышает полученную выше величину их упорядоченного разделения во внешнем поле. Значит, если даже это поле индуцировало бы молекулярные диполи, эффект от такого индуцирования был бы погребён в тепловых шумах. Тогда, по логике традиционного подхода, в большом интервале давлений и температур, диэлектрическая проницаемость неполярных газов при слабых внешних полях была бы равна единице, как и у вакуума – чего на опыте не наблюдается.

Ещё более показателен в этом отношении случай твёрдого неполярного диэлектрика – который описывается формулой Лорентц-Лоренца, единственным отличием которой от формулы Клаузиуса-Мосотти является замена диэлектрической проницаемости  на квадрат показателя преломления n. Так, в стекле (SiO2) с параметрами =2700 кг/м3 и n=1.8, разделения зарядов в индуцированных диполях при E=105 В/м составляли бы 2.610-6 Ангстрем. Между тем, размах тепловых колебаний ядер в твёрдых телах при T=300оК составляет 0.1 Ангстрем (см., например, [Г2]). Имей здесь место индуцирование молекулярных диполей – эффект от него был бы погребён в тепловых шумах гораздо надёжнее, чем в случае газов.

Но, если свойства неполярных диэлектриков обусловлены не индуцированием молекулярных диполей, то чем же они обусловлены?

Вернёмся к случаю с диэлектрической прокладкой, внесённой в заряженный плоский конденсатор. Чтобы поле конденсатора ослаблялось в объёме прокладки, на ней должны быть индуцированы поверхностные заряды – и не зря спонтанную поляризацию сегнетоэлектриков измеряют в кулонах на квадратный сантиметр [И1], т.е. в единицах поверхностной плотности заряда. При том, что в диэлектриках свободные заряды практически отсутствуют, поверхностные заряды вполне могут быть индуцированы через зарядовые разбалансы.

Действительно, логично допустить, что зарядовые разбалансы индуцируются в диэлектрике таким образом, чтобы имитированные при этом электрические заряды нейтрализовывали, в некоторой степени, неоднородности внешнего распределения зарядов. Тогда, действительно, со стороны отрицательной пластины конденсатора, в диэлектрике должен индуцироваться положительный зарядовый разбаланс, и наоборот. Оценим отклонения, от среднего 50-процентного значения, скважности прерываний квантовых пульсаций в атомных связках «протон-электрон», при которых индуцированные поверхностные заряды в диэлектрике обеспечивали бы типичные значения диэлектрической проницаемости. Будем считать, что это отклонение скважности  (в %) линейно по внешнему полю, тогда для индуцированного разбалансного заряда одной связки «протон-электрон» можно записать

qi=(/50)e=(E/50)e, (5.2.2)

где  - искомый коэффициент отклика скважности прерываний на внешнее поле, с размерностью %/(В/м). Полный индуцированный поверхностный заряд составит

Qi=NqinSS, (5.2.3)

где N – среднее число разбалансовых связок «протон-электрон», приходящихся на один атом,  - число задействованных атомных слоёв, nS – число атомов диэлектрика на единице поверхности, S – площадь поверхности диэлектрика, прилегающая к пластине конденсатора. Если Q – заряд конденсатора, то для диэлектрической проницаемости прокладки можно записать

=Q/(Q-Qi). (5.2.4)

Комбинируя выражения (5.2.2-5.2.4) и справедливое для плоского конденсатора выражение E=Q/(0S), для диэлектрической проницаемости прокладки окончательно получаем

 = 1+(NnSe/500). (5.2.5)

Из этого выражения следует, что для типичных твёрдых диэлектриков, имеющих значения =5 и nS1019 м-2, при N=1 и =1 величина коэффициента  составляет 10-9 %/(В/м). Это означает, что зарядовые разбалансы, обеспечивающие свойства диэлектриков, даже при весьма сильных внешних полях являются ничтожными – что подчёркивает колоссальные энергетические возможности электрических взаимодействий, заложенные в веществе. Ничтожные зарядовые разбалансы, индуцируемые в слабых полях, не могут, например, заметно изменить отношение заряда к массе у иона и, таким образом, привести к ошибочным идентификациям в масс-спектроскопии.

Следует добавить, что зарядовые разбалансы не являются механическими подвижками связанных заряженных частиц. Поэтому зарядовые разбалансы не подвержены влиянию тепловых шумов – эта особенность усиливает правдоподобность нашей модели.


^ 5.3 Радиоволны в диэлектрической среде, как волны зарядовых разбалансов.

В ортодоксальной физике считается, что радиоволны – это электромагнитные колебания, которые распространяются «в пустоте» со скоростью света, и которым вещество, попадающееся им на пути, лишь мешает свободно двигаться.

Критику концепции электромагнитного поля мы уже излагали выше (3.1) – по мере развития теории этого поля, в ней лишь разрастался клубок вопиющих противоречий, которые по многочисленности и остроте далеко превзошли тех, которых хватило, чтобы отказаться от концепции эфира. Отправным же пунктом наших представлений является то, что физической реальностью является только вещество (1.1) – обладающее разнообразными формами энергии.

Поэтому и при распространении радиоволн в диэлектрической среде, например, в газовой, вся физика процесса, как мы полагаем, происходит исключительно на веществе. Об этом свидетельствует определяющая роль вещества диэлектрической среды при распространении в ней радиоволн – например, такие явления как дисперсия, а также различные нелинейные эффекты. Эту определяющую роль диэлектрической среды пытаются объяснить в рамках традиционного подхода (см., например, [Х1]), переходя от случая статического поля, индуцирующего дипольные моменты молекул, к случаю переменного поля – и делают вывод о том, что, при распространении радиоволны, в диэлектрической среде распространяется соответствующая волна электрической поляризации.

Однако, несостоятельность концепции индуцирования молекулярных диполей в статическом поле мы уже постарались показать выше (5.2). В динамическом случае ситуация ещё больше ухудшается тем, что газовая диэлектрическая среда могла бы давать адекватный отклик – через колебания индуцированных дипольных моментов, а также через колебания ориентации полярных молекул – лишь для радиоволн с частотами, заметно превышающими среднюю частоту столкновений молекул. Выходит, что диэлектрическая газовая среда имела бы двойной порог отклика на радиоволну – как по уровню своих тепловых шумов, так и по частоте – ведя себя как вакуум для слабых и низкочастотных радиоволн. Но ничего подобного на опыте не наблюдается. Значит, концепция распространения радиоволны как волны электрической поляризации в диэлектрической среде, увы, является ошибочной.

Но если радиоволна в диэлектрической среде не является волной электрической поляризации – то чем же она является?

Заметим, что атомарная связка «протон-электрон», находящаяся вблизи уединённого наэлектризованного кусочка янтаря, не способна откликаться на эту неоднородность распределения зарядов так, как на неё откликались бы свободные заряженные частицы – которые приобретали бы ускорение. Но связка «протон-электрон» должна откликаться иным способом – через зарядовый разбаланс. Индуцированный таким образом электрический заряд у связки «протон-электрон» имел бы знак, противоположный знаку заряда кусочка янтаря, и величину тем большую, чем больше заряд кусочка янтаря, и чем этот кусочек ближе к связке «протон-электрон».

Теперь, вместо кусочка янтаря, представим шарик, находящийся в диэлектрической среде – например, в газовой. Если электрический заряд этого шарика изменялся бы по гармоническому закону на некоторой радиочастоте, то происходило бы следующее. Изменяющийся во времени заряд шарика индуцировал бы соответствующие изменения зарядовых разбалансов в окружающей среде – которые устанавливались бы с некоторым запаздыванием. Это запаздывание обусловлено, главным образом, не свойствами среды, а конечным быстродействием алгоритмов, управляющих зарядовыми разбалансами. В итоге, пока генератор знакопеременного заряда не прекращал бы работу, от шарика расходилась бы сферическая волна знакопеременных зарядовых разбалансов в среде – т.е., в нашем понимании, сферическая радиоволна. Подчеркнём, что эта волна отнюдь не является поперечной, поскольку никаких подвижек, ортогональных волновому вектору, в ней нет. Это разумно, поскольку поперечная сферическая волна принципиально невозможна – ибо поперечные подвижки не могут быть беспроблемно согласованы на полном сферическом волновом фронте.

Как следует из вышеизложенного, уравнения Максвелла, имеющие решения в виде поперечных волн, непригодны для описания волн зарядовых разбалансов, которые принципиально не поперечны. Нам, конечно, возразят, что настоящие радиоволны являются как раз поперечными, и укажут на феномен поляризации радиоволн – на основании которого принято делать вывод об их поперечности. Этот феномен, на наш взгляд, обусловлен тем, что реальные генераторы радиоволн принципиально отличаются от рассмотренного выше уединённого шарика со знакопеременным зарядом. Действительно, обычно генерация радиоволн не обходится без электрических токов. Рассмотрим случай реальной излучающей антенны в виде вертикального штыря, по которому генератор гоняет электрические заряды вверх-вниз. По логике вышеизложенного, в окружающем воздухе подвижки зарядовых разбалансов будут иметь соответствующие вертикальные компоненты. Приёмная линейная антенна, ориентированная вдоль этих вертикальных подвижек, сможет дать отклик на них, а ориентированная поперёк – не сможет. Это – простейшая иллюстрация того, чем, на наш взгляд, является феномен поляризации радиоволн. Какой бы изощрённой она не наблюдалась, это отнюдь не доказывает ни поперечности радиоволн, ни того, что, при своём распространении, они имеют самостоятельную физическую сущность, не сводимую к процессам в веществе. Поэтому феномен поляризации радиоволн нисколько не бросает тень на нашу модель, согласно которой радиоволны являются распространяющимися колебаниями зарядовых разбалансов – т.е. процессами, происходящими исключительно в веществе (но управляемыми с программного уровня реальности). Подчеркнём, что колебания зарядовых разбалансов безынерционны – они не являются какими-либо механическими подвижками. Поэтому волна зарядовых разбалансов не должна иметь вышеупомянутые мощностной и частотный пороги отклика среды – которые должна иметь волна электрической поляризации. Поскольку на практике этих порогов нет, наша модель выглядит предпочтительнее.

Мы не усматриваем принципиальных трудностей для того, чтобы на основе этой модели объяснить огромный пласт физических явлений, происходящих при распространении радиоволн – причём, не только в чисто диэлектрических средах, но и в частично ионизированных, например, в ионосфере. При этом следует иметь в виду, что подвижки зарядовых разбалансов, происходящие при распространении радиоволны, производят те же самые эффекты, что и подвижки «обычных» электрических зарядов – и поэтому к подвижкам зарядовых разбалансов весьма удачно подходит известный термин «токи смещения». Как можно видеть, механизм взаимодействия радиоволны со свободными электрическими зарядами мы сводим к механизму взаимодействия зарядов – разбалансных и «обычных».

Следует добавить, что при распространении радиоволны, как волны зарядовых разбалансов, не происходит переноса энергии в пространстве – а происходят всего лишь перераспределения различных форм энергии у частиц вещества. В это трудно поверить, ибо сильна иллюзия того, что заряды в окружающем антенну пространстве начинают бегать оттого, что антенна излучает энергию, которую даёт ей генератор, который, в свою очередь, берёт её из энергосети, причём – что для некоторых особенно убедительно – за эти киловатт-часы приходится платить. На наш же взгляд, в физических процессах, не связанных с переносом вещества, могут происходить лишь локальные перераспределения энергии, но никак не её перенос. Так происходит и при квантовых «перебросах» энергии (3.10), и при распространении радиоволны. Как уже отмечалось выше, зарядовые разбалансы в окружающем антенну пространстве начинают бегать отнюдь не на излучённой антенной энергии. Аналогично, и свободные заряженные частицы, реагируя на подвижки зарядовых разбалансов, обходятся собственными энергетическими запасами – в их кинетическую энергию превращается часть их собственной энергии, т.е. часть их массы (4.4).

  1   2   3   4   5   6




Похожие:

Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconЭтот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (I)
Такой уровень понимания имелся уже в самом начале эпохи изучения электричества, и до сих пор серьёзного продвижения в этом вопросе...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconЭтот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел природа света
Не получается? То-то же. Пришлось допустить, что мы можем видеть глазами предметы тогда, когда в глаза попадает нечто, идущее от...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconА. А. Гришаев этот «цифровой» физический мир
Ее связывали и с изменением состояния атмосферы, и с почвенными изменениями, и с местом расположения клиник, а лечить пытались всем,...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconЭтот «цифровой» физический мир
Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconЭтот «цифровой» физический мир
Закон всемирного тяготения, как его сформулировал Ньютон, имел чисто постулативный характер. На основе наблюдений за движением небесных...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconОлег Шапошников. Идол. Повесть
Мэрлок словно наткнулся на еще один мир. Этот мир был заключен внутри шара. Весь этот мир мерцал от пламени свечи, расположенной...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) icon12. многоуровневая вселенная
В разделах 2; 3; 4 изложены основные свойства вещества субуровня и основные принципы построения элементарных частиц, ядер и атомов...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconАтомная физика
Попытки решения проблемы структуры мира и структуры вещества были предприняты в глубокой древности, но до нас сведения о них почти...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconАтомы, молекулы, вещество
Попытки решения проблемы структуры мира и структуры вещества были предприняты в глубокой древности, но до нас сведения о них почти...
Этот «цифровой» физический мир в 5-ти разделах с Дополнением Раздел электричество и структуры вещества (II) iconГлавное создался нестабильный мир, мир конфликтов, мир столкновений…
Никто не знает, как образовался этот мир. Возможно из-за столкновения нескольких миров, возможно из-за перерождения старого мира,...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов