16. Космология и кругооборот эфира в природе icon

16. Космология и кругооборот эфира в природе



Название16. Космология и кругооборот эфира в природе
Дата конвертации10.09.2012
Размер220.86 Kb.
ТипДокументы

16. Космология и кругооборот эфира в природе



Что было, то останется всегда, ведь дух бессмертен,

Что существует сейчас, то время превратит однажды в эфир

Надпись на каменной плите в пустыне Гоби


Каждый процесс в своей конкретной форме должен иметь начало и конец, только Вселенная в целом сохраняется неизменной. И то лишь в среднем. Во Вселенной непрерывно рождаются и гаснут звезды, непрерывно рождаются и исчезают атомы вещества, все находится в непрерывном и вечном кругообороте. Все, что родилось из эфира, в эфир же, в конце концов, и возвратится, растворившись в нем.

Сегодня мы уже имеем возможность проследить кругооборот эфира в его конкретных формах. Попытаемся это сделать. Для этого нужно связать воедино некоторые процессы в галактиках, которые до недавнего времени казались не имеющими отношения друг к другу.

Что же мы сегодня знаем о галактиках и о том, что существует в межгалактическом пространстве?

Мы знаем, что существуют спиральные галактики, их больше половины от числа галактик, но есть еще галактики шаровые и эллиптические, есть галактики неправильные, напоминающие облака, есть галактики двойные, соединенные друг с другом «мостиком» из звезд (рис. 16.1-16.3).





Рис. 16.1. Различные виды галактик: а – шаровое скопление; б – типовая спиральная галактика, вид на плоскость; в – спиральная галактика, вид под углом; г – спиральная галактика, вид сбоку





Рис. 16.2. Взаимодействующие галактики: а – схема взаимодействия галактик; б – фотография двойной галактики.





Рис 16.3. Неправильная галактика – последняя стадия существования звездного скопления


Кроме того, существуют источники радиоизлучения, невидимые в телескоп, есть так называемые квазары – точечные радиоисточники большой мощности, есть небольшие, но очень активные Сейфертовские галактики и есть хорошо видимые радиогалактики, небольшие по размеру, но активно излучающие электромагнитное излучение.

Все эти галактики собраны в скопления, а скопления галактик – в сверхскопления, и те, и другие включают в себя миллионы и даже миллиарды младших структурных единиц. В этих образованиях галактики в скоплениях, а скопления в сверскоплениях распределены неравномерно, более уподобляясь тороидальным структурам, нежели шаровым.

В пространстве Вселенной много газа, есть реликтовое излучение и т. д., и т. п. Много чего есть во Вселенной! И единственно, чего нет, это понимания, почему все это так.


Несколько слов следует сказать о существующих классификациях галактик.

Как известно, в настоящее время никакой функциональной классификации галактик не существует, потому что нет никакого представления ни о внутренних механизмах галактик, ни, тем более, о механизмах их развития и взаимодействия. Все существующие классификации – морфологические, т. е. основанные на внешних, формальных признаках. В 1922 г. первую такую классификацию предложил американский астроном Э.Хаббл (рис. 16.4).





Рис. 16.4. Морфологическая классификация галактик по Хабблу: различные типы галактик расположены на схеме таким образом, что относительное содержание в них газа и молодых звезд уменьшается слева направо.


В соответствии с этой классификацией все галактики разбиты на следующие классы:

спиральные галактики – SB (около 60% от общего числа галактик);

эллиптические галактики – Е (13%);

линзообразные галактики –SO (22%);

иррегулярные (неправильные) галактики – I (4%).

Внутри них имеется дробление по подклассам.

Более поздние классификации уточняли те или иные детали, но в целом они оставались морфологическими, к тому же не учитывающими некоторых галактик, например, двойных галактик или галактик Сейферта – имеющих небольшие ядра и мощные выбросы газа.

Отсутствие эфиродинамических представлений о природе вещества не позволяло до настоящего времени просмотреть, хотя бы в принципе, всю эволюцию галактик.

Однако сейчас такая возможность появилась.

П
оскольку наиболее устойчивыми являются спиральные галактики, а это следует из того, что их большинство, следует в первую очередь рассмотреть процессы, происходящие в них.


Процессы эти таковы.

Во-первых, в спиральных рукавах Галактики обнаружено магнитное поле напряженностью порядка 10 мкГс. Странное магнитное поле, не имеющее никакого источника. Единственное, силовые линии которого не замкнуты сами на себя. Совершенно уникальное в этом смысле, поскольку все остальные магнитные поля имеют силовые линии, замкнутые сами на себя. А магнитное поле спиральных рукавов не замкнуто.

Во-вторых, из центральной области Галактики, из его ядра во все стороны вытекает газ. Первоначально предполагалось, что в ядре находится какое-то особо массивное тело, которое, разлагаясь, испускает этот газ, состоящий из протонов и атомов водорода. А когда присмотрелись, то оказалось, что в ядре Галактики вообще ничего нет, одна лишь пустота. И эта пустота неведомым образом испускает газ в немалом количестве – масса его составляет полторы массы Солнца в год.

В-третьих, сама форма нашей спиральной Галактики наводит на разнообразные размышления. Очень уж она похожа на водоворот, в котором образуется воронка. Однако для образования воронки нужно, чтобы в нее что-то втекало. А иначе как она может образоваться?

В-четвертых, в центральной области Галактики имеется шаровое скопление звезд, а в спиральных рукавах звезды расположены по периферии этих спиральных рукавов, в их стенках, как бы в трубах.

Как все это связать?

С позиций эфиродинамики все выглядит очень просто.

На рис. 16.5 представлена эфиродинамическая структура спиральной галактики. В ней имеется ядро, есть два спиральных рукава, сужающихся к ядру, звезды расположены по «стенкам» рукавов, в рукавах течет эфир от периферии к ядру, а сами звезды движутся от ядра к периферии. Звезды, не попавшие в рукава, движутся в других направлениях и образуют шаровое скопление вокруг ядра, это старые звезды. Все соответствует известным фактам.




Рис. 16.5. Эфиродинамическая структура спиральной галактики:

а – вид на плоскость; б – вид сбоку.


Что может втекать в ядро Галактики, образуя спиральный «водоворот»? Конечно же, эфир, и это не водоворот, а «эфироворот»! Куда же девается эфир, втекая по двум спиральным рукавам в ядро Галактики? В результате соударения струй эфира после их хаотического перемешивания на высоких скоростях образуются тороидальные винтовые вихри эфира. Эти вихри самоуплотняются и делятся, пока не достигнут некоторой критической плотности своего тела. Сначала образуются винтовые вихревые тороиды – протоны, а затем протоны сами себе создают из окружающего их эфира электронную оболочку, и получается атом водорода. Образовавшийся протонно-водородный газ расширяется и стремится удалиться из ядра, что и наблюдается.

А что же в спиральных рукавах? Эфир течет в них в направлении ядра. Однако, как и полагается в «водовороте», эфир не может течь туда просто поступательно. Он закручивается, постепенно смещаясь к ядру и увеличивая с каждым оборотом свой шаг (рис. 16.6).



Рис. 16.6. Движение по спирали с переменным шагом: а – движение эфира в спиральном рукаве Галактики; б – движение воды при стоке в отверстие


Расчет показывает, что на уровне Солнечной системы эфир, двигаясь со скоростью 300-600 км/с перпендикулярно оси спирального рукава, за одну секунду смещается в направлении ядра галактики всего лишь на один микрометр. А около ядра сечение рукава уменьшается, шаг меняется, и эфир со скоростью десятки тысяч километров в секунду врывается в область ядра Галактики. Здесь одна струя сталкивается с другой, втекающей туда же из другого спирального рукава, происходит соударение струй, перемешивание, вихреобразование и формирование макрогаза. Остальное уже описано.

Тогда становится понятным наличие «разомкнутого» магнитного поля. Поскольку магнитное поле представляет собой поток закрученного эфира, то мы и наблюдаем его в спиральных рукавах Галактики.

Что же происходит дальше с макрогазом, выделившимся из ядра Галактики? А происходит вот что.

Как известно, поверхность любого газового вихря более холодная, чем окружающая вихрь среда. Этот факт подтверждается тем, что при всяком градиентном течении газа происходит охлаждение газа.

Охлаждаются стенки воздухозаборников на входе газовых турбин, после прохождения смерча на земле выпадает иней. Объясняется это тем, что в вихрях происходит перераспределение энергии молекул: поскольку часть энергии уходит на упорядоченное течение струй, а на хаотическое, то есть тепловое, энергии остается меньше, значит, температура понижается. Говоря откровенно, объяснение слабоватое, однако факт есть факт, температура вихрей и в самом деле ниже, чем среды. Поэтому в среде образуется градиент температур, соответственно образуется градиент давления и начинают действовать силы, которые мы называем гравитацией.

Значит, стоит только появиться макрогазу, как начинает действовать гравитационное притяжение, и газ собирается в скопления, постепенно формируясь в звезды. А поскольку газ расширялся, стремясь выйти из ядра, то образованные из него звезды будут стремиться к периферии Галактики.

О том, как вокруг звезд образуются планетные системы, будет сказано отдельно, пока надо рассмотреть дальнейшую судьбу звезд.

Те звезды, которые не попали в спиральный рукав Галактики, относительно медленно, с начальной скоростью порядка 50-100 км/с, удаляются от ее центра. Постепенно вихри эфира – протоны утрачивают свою устойчивость вследствие трения об эфир: хотя вязкость эфира и мала, однако она не равна нулю. С протонами происходит то же самое, что с дымовыми кольцами, которые курильщики выпускают изо рта: кольца постепенно теряют свою энергию, скорость вращения уменьшается, градиент давления уменьшается, диаметр вихрей увеличивается. А затем вихрь теряет свою форму и обращается в свободный газ. Воздушное кольцо превращается в просто воздух, а эфирный винтовой тороид – протон – в просто свободный эфир. Материя никуда не исчезла, а протон и присоединенный к нему вихрь – электронная оболочка – исчезли, растворились в эфире. Поэтому шаровое скопление звезд вокруг ядра Галактики имеет относительно четкую границу: все протоны, образовавшиеся одновременно, почти в одно время начнут распадаться, растворяясь в эфире мирового пространства.

А что же со звездами, попавшими в спиральные рукава Галактики?

Сначала они сместятся к пограничным слоям этих рукавов, так как давление в эфире в этих рукавах распределено таким образом, что и из внутренних областей, и из внешних, если они близки к поверхности рукавов, звезды будут смещены в пограничные слои. Но и в этих слоях они будут двигаться от ядра к периферии. Однако, хотя они движутся с теми же скоростями, что и звезды, попавшие в шаровые скопления, устойчивость протонов в них будет большей: ведь они движутся в эфирном потоке, который их омывает и создает повышенный градиент скорости на границах каждого вихря. А чем выше градиент, тем меньше в этом слое вязкость газа, тем меньше энергии будет отдавать вихрь окружающей среде. Значит, протоны в звездах, попавших в спиральные рукава Галактики, будут существовать дольше, и путь, проходимый ими, будет больше. Это очень хорошо видно на фотографиях спиральных рукавов галактик: длина спиральных рукавов в 2-3 раза больше, чем. радиус шарового скопления звезд около центра.

Когда же звезда пройдет достаточно большой путь, то пройдет и значительное время, исчисляемое десятком (или десятками?) миллиардов лет, протоны отдадут эфиру значительную часть своей энергии вращения, потеряют устойчивость и развалятся, растворятся в эфире. Переход эфира из состояния вихря в свободное состояние означает увеличение давления в этом месте, так как всякий вихрь был уплотнен, и тот же эфир занимал меньший объем, а вихреобразование в ядре, наоборот, снижает давление, так как вихри в процессе формирования уменьшают свою энергию. Следовательно, имеется разность давлений в спиральном рукаве Галактики: в ядре меньше, а на периферии больше. Вот эта разность давлений и гонит вновь эфир от периферии к ядру.

Таким образом, в спиральных галактиках происходит кругооборот эфира: от периферии к центру эфир течет в виде струй, от ядра к периферии перемещается в составе звезд. И так если не бесконечно, то, во всяком случае, достаточно долго. Много сотен миллиардов лет, пока эфир этой галактики не отсосется какой-либо другой галактикой или новым центром вихреобразования.

В этом плане интересно вспомнить о так называемых двой-ных галактиках (рис. 16.2). Множество таких двойных галактик обнаружено астрономом Б.А.Воронцовым-Вельяминовым. Характерной особенностью двух взаимодействующих галактик является промежуточный мостик из звезд, соединяющий эти галактики. При этом перемычка из звезд пронизывает одну из галактик и продолжается далее на значительное расстояние, а затем звездная дорожка заворачивается к той галактике, которую она пронизала, и где-то, не дойдя до нее, обрывается. В чем тут дело?

А дело представляется таким образом. Эфир из первой галактики отсасывается второй, более молодой.

Эфир в первой галактике вместо того, чтобы отправиться от периферии к ее центру, отправляется к новому центру вихреобразования – ядру второй галактики. Течение эфира не только отбирает эфир у первой галактики, но по дороге оно захватывает звезды из этой же галактики, и они образуют мостик, устремляясь тоже ко второй галактике. Однако, если эфирный поток усваивается ядром второй галактики и дальше он не движется, то звездный ручеек продолжает свое течение по инерции, пронзая вторую галактику. А так как время жизни звезд значительное, то звезды так по инерции и продолжают двигаться, покидая и вторую галактику. Через некоторое время звездное вещество распадается, и свободный эфир с конца звездного ручейка устремятся к ядру второй галактики. По дороге он захватывает те звезды, которые еще не успели расформироваться, это и видно в виде крючковатого хвоста звездной дорожки. Таким образом, из двух галактик, обменивающихся эфиром, первая – умирающая, вторая – нарождающаяся.

По каким причинам вдруг началось вихреобразование за пределами первой устойчивой галактики? Сейчас это неизвестно. Однако некоторые предположения можно высказать. Начало такому вихреобразованию может быть положено в недрах первой галактики в результате, например, столкновения комет. Переме-шивание струй эфира, скорость которых внутри комет огромна, может дать начало вихреобразованию. Этот центр вихреобра-зования, образованный внутри галактики, затем выносится за ее пределы и дает начало образованию новой галактики.

Не происходят ли попытки провести подобный эксперимент на ускорителях высоких энергий, которых развелось несколько больше, чем это нужно человечеству? Кто знает границы допустимого повышения уровня энергии на них? Не может ли получиться так, что в результате успешных экспериментов на ускорителях в дальнейшем некому будет порадоваться достигнутым успехам?

Исходя из всего изложенного, можно попытаться составить функциональную классификацию галактик, учитывающую все эти эфиродинамические процессы.

Отправной точкой классификации является представление о том, что в результате столкновения комет в уже существующих галактик образуется новый центр вихреобразования и создания протонов. Поскольку протоны – это уплотненный эфир, давление эфира в этом центре падает, и туда устремляются потоки эфира из окружающего пространства. Протоны создают вокруг себя присоединенные вихри эфира – электронные оболочки, превращаясь в атомы водорода.

По мере увеличения массы протонно-водородный газ, расширяясь, покидает центр вихреобразования, одновременно собираясь в звезды. Центр вихреобразования становится виден, но звезд еще недостаточно для того, чтобы экранировать электромагнитное излучение, генерируемое центром вихреобразования. Это – галактики Сейферта.

Увеличивающееся число звезд все более экранирует центр, но еще не полностью закрывает его. Это радиогалактики.

Дальнейшее увеличение числа звезд экранирует центр, это шаровые галактики.

Протоны звезд шаровых галактик, отодвигаясь от центра, постепенно теряют свою энергию и начинают растворяться в эфире. Давление эфира на периферии повышается, и эфир начинает возвращаться к центру. Образуются сначала эллиптические галактики и формируются рукава. Галактика постепенно формируется в спиральную.

Если процесс вихреобразования в центре кончится раньше, чем начнет поступать эфир с периферии, то он уже не возобновится, образованные звезды будут уходить от центра и постепенно растворяться в эфире. Это неправильные галактики, последняя стадия их существования.

Если достаточно мощный центр вихреобразования оказался вблизи одной из старых галактик, он начнет отсасывать эфир от нее, при этом вслед за струями эфира туда же устремятся и звезды, образуя звездный мостик. Эфир будет усваиваться новым центром вихреобразования, а звезды его проскочат. Из второй галактики будет торчать звездный «хвост». В конце этого «хвоста звезды растворяться в эфире и этот эфир вернется к центру второй галактики.

Вот на этой основе и можно теперь представить функциональную классификацию галактик (рис. 16.7).






Рис. 16.7. Эфиродинамическая функциональная классификация галактик


А учитывая, что устойчивым образованием эфирной структуры является тороидальная структура, то становится понятным и структура скоплений и сверхскоплений галактик: это тороидальные структуры потоков эфира во Вселенной, организованные иерархически, статистика распределений галатик в скоплениях и скоплений в сверхскоплениях этому вполне соответствует.

В заключение стоит указать, что отношение массы эфира космического пространства к массе вещества в звездах составляет 108 или 100 миллионов. Поэтому можно быть уверенным, что процессы, происходящие в эфире космического пространства существенным образом влияют на все во Вселенной.

^

17. Происхождение и становление Солнечной системы




Нет столь великой вещи, которую не

превзошла бы величиною еще большая

Козьма Прутков


Вопросу возникновения Солнечной системы и объяснению особенностей ее строения посвятили свои усилия многочисленные исследователи, такие, как Р.Декарт, И.Кант, Ж.Бюффон, П.Лаплас, Дж.Дарвин, Ф.Хойл, Дж.Койпер, У.Мак-Кри и многие другие. Наиболее признанной в настоящее время является концепция академика О.Ю.Шмидта, согласно которой планетная система образовалась из огромного уплощенного газопылевого протопланетного облака, некогда окружавшего Солнце (вопрос о происхождении самого облака не рассматривается). Земля и родственные ей планеты от Меркурия до Марса аккумулировались из твердых тел и частиц, а при аккумуляции планет-гигантов, по крайней мере, Юпитера и Сатурна, содержащих, в основном, водород, участвовал наряду с твердыми телами также и газ. Существуют и другие гипотезы.

Вайцзекер в 1943 г. выдвинул физическую теорию турбулентности применительно к проблеме возникновения Солнечной системы, согласно которой планеты возникли из сильно сплюснутой газовой туманности, вращающейся вокруг Солнца. В.Г.Фесенков в 1943-1960 гг. обратил внимание на возможную роль в формировании первичных вихрей-планет конвекционных токов вещества в протопланетной туманности.

Английский астрофизик Ф.Хойл в 1944 г. предложил гипотезу о формировании планет из горячего звездного газа, а в 1960 г. он же предложил гипотезу о формировании планет из холодного межзвездного вещества. Он же известен в космогонии как автор идеи о возможности переноса момента количества движения от Солнца к планетам электромагнитным путем.

Американский астроном Дж.П.Койпер предположил, что Солнце образовалось в очень плотном облаке и что при этом осталась туманность в форме диска радиусом в несколько десятков астрономических единиц, которая вращалась вокруг Солнца и из которой в дальнейшем и сформировались планеты. Английский астрофизик У.Мак-Кри рассмотрел процессы гравитационной конденсации околозвездной туманности размером до двух световых лет и проанализировал ее возможную эволюцию при неоднородной плотности. Эту идею он использовал для объяснения происхождения Солнечной системы.






Однако все эти гипотезы не отвечают на всю совокупность вопросов, связанных с особенностями строения Солнечной системы. Вот эти вопросы:

1. Каким образом вообще возникла Солнечная система?

2. Почему подавляющая часть массы Солнечной системы (99,87%) заключена в Солнце?

3. Почему, несмотря на малую массу, система планет несет в себе основной (98%) орбитальный момент?

4. Почему плоскости всех планет и всех основных спутников совпадают с плоскостью солнечного экватора?

5. Почему все планеты и само Солнце обращаются в одном и том же (прямом) направлении?

6. Почему сами планеты вращаются вокруг своих осей также в том же направлении – прямом?

7. Почему большинство спутников вращается вокруг своих планет в прямом направлении?

Существуют и другие вопросы, но перечисленные – основные.

Отвечая на часть вопросов, каждая гипотеза не нашла ответа на другие. Практически ни одна гипотеза, за исключением, разве, гипотезы Декарта об эфирных вихрях, не дала объяснения происхождения материала, из которого образовалась Солнечная система. Но главным недостатком гипотез, на наш взгляд, является отрыв вопроса о происхождении и становлении Солнечной системы от галактических процессов. Ведь Солнечная система является элементом галактики, таких солнц в Галактике – миллиарды, и вопросы происхождения систем, подобных Солнечной, должны решаться на общей основе. Эфиродинамика впервые дает возможность рассмотреть вопросы происхождения и особенности строения Солнечной системы в связи с галактическими процессами, что позволяет относительно просто ответить на поставленные вопросы.

В соответствии с представлениями эфиродинамики в пределах спиральной Галактики осуществляется кругооборот эфира: к ядру эфирные потоки устремляются в спиральных рукавах, от ядра эфир уходит в составе звезд в виде сформированных тороидальных винтовых вихрей – протонов с присоединенными вихрями – электронными оболочками. Сами звезды, образованные из газа, вылетающего из ядра, продолжают по-инерции двигаться от ядра к периферии в пограничном слое эфира спиральных рукавов Галактики.

Любая звезда, попавшая в пограничный слой, в том числе и Солнце, окажется под воздействием эфирного потока устремляющегося от периферии к ядру. В разреженном макрогазе, образующем звезду на начальном этапе ее развития, эфирный ветер, перемещающийся в пространстве в районе ядра со скоростями десятки тысяч километров в секунду, будет оказывать давление на каждый протон, тормозя его.

Однако образование звезды сопровождается ее сжатием, что приводит к взаимному экранированию протонов. Это означает, что фактически непосредственно под поверхностным слоем эфирный ветер резко снижает свою скорость. Таким образом, воздействие эфирного ветра сказывается, главным образом, лишь на поверхностном слое звезды. Влияние же эфирного ветра на уменьшение поступательного движения звезды оказывается небольшим (расчет показывает, что за год относительное уменьшение скорости составляет лишь одну стомиллиардную долю). Поверхностный слой гравитацией привязан к звезде и оторваться от нее не может, несмотря на торможение, которое оказывает ему встречный эфирный ветер. Но поскольку поток эфирного ветра имеет градиент скорости, то на противоположных сторонах звезды скорость струй, обдувающих звезду, будет различной, и воздействующие силы будут разными, поэтому поверхностный слой звезды, слабо связанный со всем телом звезды, начнет вращаться (рис. 17.1). Полученный момент количества движения будет постепенно распределяться на всю массу звезды, но основное вращение сохранится за поверхностным слоем.

Расчет показал, что градиента эфирного ветра, устремляю-щегося к ядру Галактики, более чем достаточно, чтобы обеспечить раскрутку Солнца, тем более, если учитывать его последующее сжатие и то обстоятельство, что на ранней стадии масса Солнца составляла не более 0,01 современной его массы.





^ Рис. 17.1. Тело в градиентном потоке эфира: а – перемещение тела в область наибольшего градиента скоростей газовой струи; б – создание вращательного движения тела в градиентной струе газа


Реально процесс шел сложнее. По мере сжатия солнечной массы и увеличения плотности Солнца силы, действующие на протоны со стороны эфирного ветра, уменьшались вследствие их экранировки друг другом. Солнце же перемещалось от ядра к периферии, переходя в область расширенных рукавов, где и скорость, и градиент эфирного ветра уменьшаются, а главное, вследствие того, что Солнце со временем накапливало массу за счет поглощения окружающего эфира, его окружная скорость уменьшалась, и накопленный первоначальный момент количест-ва движения перераспределялся на всю массу Солнца. За счет увеличения массы Солнца и его радиуса на второй стадии фор-мирования Солнца его скорость вращения должна была умень-шиться во много раз, приближаясь к современному значению.

Таким образом, на начальной стадии образования Солнца при относительно небольшом радиусе и относительно небольшой массе скорость вращения его была высокой. Если бы в то время Солнце успело накопить весь вращательный момент, который оно имеет сейчас, то скорость движения его экваториальных слоев составила бы не меньше, чем 1000 км/с, и при таком соотношении центробежная сила превысила бы силу притяжения на поверхности Солнца в 100 раз!

Это значит, что гипотеза Дж.Дарвина, высказанная им относительно образования Луны, как оторвавшейся части Земли, может быть применена и по отношению к образованию всей планетной системы: при сжатии Солнца на первой стадии его эволюции на его поверхности по экватору вполне могла возникнуть приливная волна, которая вследствие преобладания центробежной силы над тяготением оторвалась и далее распалась на части, так как в ней имелись внутренние вращения: ведь эта часть отпала от поверхностного слоя, в котором был свой градиент скорости. Эти части сформировались в планеты, с которыми произошло то же самое, – у них образовались приливные волны, а далее по той же схеме образовались спутники, возможно, сразу же после образования планет. Естественно, что все эти преобразования происходят в одной плоскости, и вращения всех основных тел будут прямыми.

Те спутники, которые вращаются в обратном направлении (четыре из 13 – у Юпитера, один из 10 – у Сатурна и один из двух – у Нептуна), возможно, были захвачены планетами извне. Не исключено, что Тритон, весьма крупный спутник Нептуна, вращающийся на орбите в противоположном (обратном) направлении, был когда-то самостоятельной самой дальней планетой Солнечной системы и был захвачен Нептуном. Тогда его обратное орбитальное вращение естественно.

Основной трудностью при объяснении указанных фактов было предположение о том, что газообразное тело, каковым является Солнце, должно вращаться по закону постоянства циркуляции скорости, т. е. чем глубже, тем больше скорость вращения, что привело бы при отрыве планет к обратному вращению. Однако это неверно. Закон постоянства циркуляции справедлив далеко не всегда. Этот закон реально выполняется при наличии общей для всей массы причины раскрутки тела. Ничего подобного в данном случае нет. Раскрутка Солнца происходила по его поверхности, поэтому поверхностные слои должны были двигаться быстрее, чем внутренние, и никакого противоречия здесь не возникает.

Что касается значительного превышения орбитального момента у планет по сравнению с моментом вращения самого Солнца, то здесь также не возникает никаких трудностей. После отрыва планет от Солнца они отходят от него все дальше, в результате чего при одном и том же градиенте скорости эфирного ветра разность сил на краях орбит всех планет все растет и увеличивается по мере увеличения их расстояния от Солнца. Эфирный ветер будет все больше раскручивать планеты на их орбитах, все более удаляя их тем самым от центрального тела, что и приведет к накоплению планетами орбитального момента. Солнце же, сжимаясь под действием гравитации, на первой стадии, наоборот, будет уменьшать свой радиус, что уменьшит воздействие на него эфирного ветра (рис. 17.2).





Рис. 17.2. Возникновение планетной системы и наращивание орбитального момента планет под воздействием градиента эфирного ветра


По прошествии некоторого времени Солнце со всей своей планетной системой перейдет в другую область спирального рукава Галактики. В этой области скорость эфирного ветра меньше, градиент меньше, существенного влияния эфирного ветра на формирование Солнечной системы уже не будет. Положение плоскости вращения Солнца и плоскости эклиптики в основном сохраняется, но направление эфирного ветра измени-лось по сравнению с тем, которое оно имело в околоядерной области. Теперь эфирные потоки обдувают Солнце и всю систему в почти перпендикулярном плоскости эклиптики направлении. На ориентации плоскости эклиптики это изменение направления эфирного ветра никак повлиять не смогло, для Солнца же был создан дополнительный момент, что принудило, по крайней мере, поверхностные слои прецессировать и изменить несколько угол плоскости вращения внешних слоев относительно внутренних.

Само Солнце является центробежным насосом эфира, этим может быть объяснено и возникновение солнечных пятен в области между 20 градусами от полюсов и 20 градусами от экватора в обе стороны. На самих полюсах и на самом экваторе солнечные пятна не появляются.

Дело в том, что именно в этих областях между 20 и 70 градусами в обеих полушариях Солнца потоки эфира текут под углом почти в 900, создавая в этих областях повышенный градиент скорости и стимулируя тем самым образований вихрей эфира в самом Солнце. Это и способствует образованию солнечных пятен, представляющих собой вихревые образования эфира (рис. 17.3). Сами солнечные пятна на самом деле являются частью тороидальных вихрей эфира, захвативших солнечное вещество. В связи с тем, что в теле Солнца плотность вещества больше, чем в окружающем его пространстве, видимыми становятся те части тороидальных вихрей, которые непосредственно выходят на поверхность Солнца.

Как видно из рисунка, возможно два способа расположения эфирных тороидов на поверхности Солнца: в одном случае ось тороида перпендикулярна поверхности Солнца, тогда видна только центральная часть, это соответствует однополярному пятну, во втором случае ось тороида параллельна поверхности Солнца, это соответствует двум пятнам – одному «северному» и второму – «южному» (аналогично магнитам) (рис. 17.3).




Рис. 17.3. Образование пятен на Солнце: а – Солнце как центробежый насос, перекачивающий эфир; б – потоки эфира в районе униполярного пятна; в – потоки эфира в районе биполярного пятна. 1 – направление подсоса эфира; 2 – выдувание эфира по экватору Солнца; 3 – область максимальных градиентов эфирных потоков и область возникновения солнечных пятен; 4 – поверхность Солнца; 5 – области наблюдаемых солнечных пятен.


Поскольку относительно внешнего эфира Солнце ведет себя как центробежный насос, выбрасывая эфир по периферии и втягивая его по полюсам, в результате вокруг Солнца образуется серия присоединенных вихрей. На рис. 17.4. показана аналогичная структура потоков в жидкости, индицируемые колеблющимся цилиндром.





Рис. 17.4. Вторичные вихри, индицируемые колеблющимся цилиндром Течения вокруг цилиндра подобны течениям эфира вокруг Солнца как центробежного насоса


В центрах вихрей имеются области пониженного давления, и все планеты располагаются в них, чем и объсняется известная зависимость Тициуса-Боде – геометрическая прогрессия наращивания расстояний планет от Солнца (рис. 17.5).




Рис. 17.5. Тороидальные вихри эфира, создаваемые Солнцем, зоны пониженного давления эфира, соответствующие зависимости Тициуса-Боде.

Из изложенного следует, что эфирный ветер в районе Солнечной системы имеет не одну, а две систематические составляющие – галактическую и солнечную (рис. 17.6). Последняя составляющая эфирного ветра обязана своим происхождением Солнцу, работающему как центробежный насос.





Рис. 17.6. Направление эфирного ветра относительно орбиты Земли:

а – в начале образования Солнечной системы и в настоящее время; б – годовые перемещения Земли относительно потоков эфира, создаваемых Солнцем

В результате все планеты Солнечной системы попадают в разное время своего года в разные области, в которых направление эфирного ветра меняет свой знак. Для них имеет место изменение направления эфирного ветра в течение года, поскольку на одной стороне орбиты обе составляющие суммируются, а на противоположной вычитаются.

Это приводит к смещению планет, а в целом – к наклону плоскостей орбит, примерно на 70 относительно солнечного экватора.

Таким образом, рассмотрение процессов образования и развития Солнечной системы как результата процессов, происходящих в Галактике, на основе эфиродинамических представлений позволяет естественным образом объяснить основные особенности строения Солнечной системы.




Похожие:

16. Космология и кругооборот эфира в природе iconЗаключение Заключение
Нютона. В соответствии с первой взаимодействие между телами может происходить только посредством промежуточной среды – эфира, в соответствии...
16. Космология и кругооборот эфира в природе iconМежзвездная пыль и гмо. Кругооборот вещества в галактике
...
16. Космология и кругооборот эфира в природе iconВведение Введение Космология
При рассмотрении изменений, происходящих во Вселенной, космология близко соприкасается с космогонией, изучающей происхождение и развитие...
16. Космология и кругооборот эфира в природе iconЗаключение Заключение
Это связано с тем, что теоретическая физика принципиально отвергла саму идею существования эфира – мировой среды в природе. Без восстановления...
16. Космология и кругооборот эфира в природе iconКраткая история эфира
В результате этого в ходе развития физики были отброшены не только эти теории, модели и гипотезы, но также и собственно понятие эфира...
16. Космология и кругооборот эфира в природе iconКраткая история эфира
В результате этого в ходе развития физики были отброшены не только эти теории, модели и гипотезы, но также и собственно понятие эфира...
16. Космология и кругооборот эфира в природе iconСтроение эфира Глава Строение эфира
При этом из всего бесконечного разнообразия свойств реального мира в первую очередь необходимо учитывать свойства, связанные с передачей...
16. Космология и кругооборот эфира в природе iconВ. М. Эфир русская теория
Предложена эфирная модель мира, согласно которой единственным веществом Вселенной является эфир; элементарная частица эфира — идеальный...
16. Космология и кругооборот эфира в природе iconФильтрация мирового эфира
Принято, что течение эфира подчиняется фильтрационному закону Дарси. Приводятся соотношения коэффициента увлечения и основных параметров...
16. Космология и кругооборот эфира в природе iconВ. А. Ацюковский начала эфиродинамического естествознания книга
В книге в первой части рассмотрены некоторые положения диалектического материализма как основа методологии эфиродинамики, строение...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов