И. А. Болдов геометрическая теория строения материи и пространства icon

И. А. Болдов геометрическая теория строения материи и пространства



НазваниеИ. А. Болдов геометрическая теория строения материи и пространства
страница1/5
Дата конвертации10.09.2012
Размер0.58 Mb.
ТипДокументы
  1   2   3   4   5


И. А. Болдов


ГЕОМЕТРИЧЕСКАЯ ТЕОРИЯ СТРОЕНИЯ МАТЕРИИ И ПРОСТРАНСТВА


  1. ВВЕДЕНИЕ


Существующие теории строения элементарных частиц, как правило, не рассматривают частицы как протяженные объекты, имеющие какую-либо внутреннюю структуру. Между тем, логично было бы предположить, что масса частиц зависит от ее пространственной протяженности, а точнее, объема. Это предположение также подкрепляется гипотезой «Большого взрыва», по которой вся видимая вселенная образовалась практически одновременно. Скорее всего, можно говорить о том, что плотность вещества в широком понимании, т.е. частиц, которые принято называть «элементарными», и которые появились одновременно, одинакова в рамках наблюдаемой реальности. Это предположение о равномерной плотности частиц и их определенных размерах, легло в основу предлагаемой «геометрической теории».

Современные методы изучения строения элементарных частиц, заключающиеся в их разгоне на ускорителе, и разбивании о мишень, можно сравнить с изучением строения глиняного горшка , путем разбивания его о стену, и исследования полученных обломков.

Безусловно, многие достижения в изучении элементарных частиц принадлежит именно таким методам. Но причисление к числу «элементарных» все бỏльшего количества частиц, резонансов, бозонов, дает повод считать, что либо не все они истинно «элементарные», либо критерий их отбора необходимо менять, либо как-то объяснить существующее положение вещей простым и понятным способом.

Опыты Хофштадтера по рассеянию быстрых электронов на атомных ядрах убедительно показали, что нуклоны имеют конечные пространственные размеры. Но поскольку элементарным частицам с самого начала было отказано в праве иметь пространственную структуру, то и попыток классификации с ее помощью не было.

Размеры радиусов нуклонов (протона и нейтрона) в 0,8 Ферми (1Ф = 10–13 см) найдены Хофштадтером экспериментально, поэтому не могли быть отвергнуты и зафиксированы в справочниках (как досадное исключение, на которое никто не обращал внимания). Таким образом, есть два принципиально различных подхода к описанию структуры элементарных частиц: либо локальность, теория относительности и принцип неопределенности Гейзенберга, либо протяженность и отказ от теорий, которые ей противоречат.


  1. ^ СТРОЕНИЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ


Из курса физики в объеме средней школы известно, что полная энергия частицы в инерциальной системе отсчета Еин равна сумме энергии покоя Е0 и энергии движения Е имп.


Еин= Е0 + Е имп, (1)

где

Е0 = m c2 (2)

В момент удара частицы о мишень можно говорить об ее эквивалентной массе, определяемой как :

m = Еин / c2 (3)

При разгоне частиц до субсветовых скоростей прирост массы весьма значителен, что позволило наблюдать частицы с массой намного больше чем масса протона. Если сравнивать все это с попытками исследования глиняного горшка, то в момент удара о стену он превращается в нечто огромное, и разлетается на куски, масса которых намного больше массы покоя исходного горшка.

Именно это и ввело исследователей элементарных частиц в заблуждение, что куски, на которые разлетается исходная частица (протон), также являются самостоятельными (родившимися?) частицами, хотя совершенно непонятно, что дало повод считать именно так. Отличие свойств от свойств исходных частиц? Но один из основополагающих гносеологических законов философии - Закон перехода количества в качество. Да, свойства изменились, но это всего лишь потому, что изменилось количество материи. А то, что получается в результате столкновения двух релятивистских протонов, не может быть ничем иным, кроме многократно увеличенных частей (кусков) протона, и тех продуктов, на которые эти части распадаются далее. А поскольку часть не равна целому, то и свойства у полученных кусков иные. Масса полученных частиц большая ? Так затем и разгоняли, чтобы масса увеличилась.

Сам термин «рождение» частицы по смыслу подразумевает то, что ничего не было, и вот вдруг стало. Частица «родилась». Возникают резонные вопросы - Из чего родилось ? И куда делось то, что было ? Умерло ? Ушло в небытие ?

Но еще г-ну Ломоносову был известен закон сохранения вещества. Может быть более правильным говорить о «превращении» частиц или их кусков ? Об их видоизменении, разделении на части или соединении в целое ?

И тут всего один шаг до вывода, что если частицы или их части могут «превращаться» друг в друга (соединяться и разделяться), то все они состоят из одной какой-то материи (как философской категории), которая может принимать различные формы. Вот тогда все встает на свои места. Причем в данном случае термин «формы» имеется в виду, как в натуральном, геометрическом, так и в философском значении.

Тут стоит вспомнить еще об одном законе философии – Законе диалектической связи между формой и содержанием. А поскольку содержание и свойства неразрывно связаны, то изменение формы ведет к изменению содержания, и соответственно свойств.

Именно поэтому попытки систематизировать и как-то объяснить все известные «элементарные частицы» не удаются, поскольку физики неправильно понимают, что именно они исследуют, сваливая в одну кучу как собственно «элементарные» частицы, (горшки) так и их осколки. Именно потому количество разновидности того, что физики получают на ускорителях, растет, что с ростом энергии разгона частиц, получается больше разных осколков с совершенно разными формами и соответственно с различными свойствами.

С этой точки зрения, можно считать всю современную физику элементарных частиц вкупе с квантовой хромодинамикой, науками по изучению и систематизации осколков увеличенных нуклонов и ничем более.

В данном случае мы имеем ярчайший пример как неправильный термин, уводит от истинного смысла явления.

Еще в 1917 г. П. Эренфест отметил, что в эвклидовых пространствах с размерностью более трех не могут существовать устойчивые аналоги атомов и планетных систем. Но, поскольку при размерности менее трех не могут возникнуть сложные структуры, то три является единственной размерностью, при которой реализуются основные, устойчивые элементы Вселенной, т.е. элементарные частицы.

Логично было бы предположить (применив «Принцип Оккама»), что и элементарные частицы существуют в трехмерном виде и только. Следовательно, все свойства, и в первую очередь масса, этих частиц определяются только их строением и объемом в нашем трехмерном мире.

Из теории групп известно, что конечные подгруппы собственных вращений трехмерного пространства исчерпываются списком: Cn, Dn , C , O, Y

В списке имеется две серии Cn, Dn с произвольным n. Остальные C , O, Y – спорадические группы симметрии правильных многогранников, которые не входят ни в какие серии.

Если рассмотреть таблицу правильных выпуклых многогранников (тел.Платона), все грани которых есть конгруэнтные правильные многоугольники, то можно заметить ее сходство с началом таблицы элементарных частиц.


Таблица 1. Правильные выпуклые многогранники




п\п

Вид многогранника

Граней

Вершин

Ребер

1

Тетраэдр

4

4

6

2

Октаэдр

8

6

12

3

Гексаэдр (куб)

6

8

12

4

Икосаэдр

12

20

30

5

Додекаэдр

20

12

30





Тетраэдр Октаэдр Гексаэдр Икосаэдр Додекаэдр


Рисунок 1. Правильные многогранники


Таблица 2. Фотон и Лептоны




п\п

Вид частицы

Масса, Мэв

Электр. Заряд

Лептон. Заряд

Вид заряда

1

γ

~ 0

0

0

2

ν e

< 7*10-6

0

+1 e

3

e-

> 4.3*1023 лет

-1

+1 e

4

ν μ

< 0.17

0

+1 μ

5

μ -

2.2*10-6

-1

+1 μ


^ Выскажем гипотезу:

Гипотеза 1 : Элементарные частицы представляют собой по форме многогранники. Масса частицы определяется объемом соответствующего многогранника и зависит от длины ребра. Свойства частицы определяются видом (структурой) многогранника. Проявления различных законов сохранения нефизических зарядов (лептонных, барионных, странность и пр.) - следствия закона сохранения структуры многогранника, выраженной в его осях симметрии. При столкновении частиц их многогранники соединяются в (или раскалываются на) частицы, которые принимают форму иных многогранников.


Как видим из Таблицы 1, есть две группы многогранников, которые дуальны, т.е один можно получить из другого, если центры граней одного, принять за вершины другого, и которые имеют одинаковую симметрию. Это пары Гексаэдр и Октаэдр, Додекаэдр и Икосаэдр. У каждой из этих пар одинаковое количество ребер, а количество вершин и граней меняются местами. Можно предположить, что это пары связанные лептонными зарядами, тогда первая пара – это Электрон (Гексаэдр или Куб) и электронное нейтрино (Октаэдр). Вторая пара – Додекаэдр (Мюон) и Икосаэдр (Мюонное нейтрино).

Также есть один многогранник, который дуален сам себе. Это тетраэдр. В таблице 2 ему соответствует Фотон.

Сделав такое предположение, можно заметить, что частицы, многогранники которых, образованы из правильных треугольников, движутся со скоростью света. У автора пока нет этому объяснения. Напротив, многогранники, образованные из квадрата (Электрон) и пятиугольника (Мюон), имеют массу покоя.

Объем Гексаэдра определяется как третья степень длины его стороны а. Приняв сторону Гексаэдра за единицу, получим:

Vе = а3 = 1: (4)

Объем Додекаэдра при стороне равной а определяется по формуле :

V μ = a3/4(15+7√5); (5)

Приняв сторону Додекаэдра а=3, получим:

V μ =206,9.

Если сравнить полученную величину с общепринятой величиной массы Мюона (в электронных массах) равной 206,77, то увидим, что погрешность определения массы Мюона по новой теории, составляет менее семи сотых процента, что вполне неплохо, и не может объясняться простым совпадением.

Лептонный заряд можно объяснить дуальностью частиц или, точнее, одинаковым количеством и расположением осей симметрии. В Табл. 1 это электронный лептонный заряд и мюонный лептонный заряды, соответственно.

Распад Мюона, согласно предложенной гипотезе, представляется как «схлопывание» Додекаэдра в Куб, Икосаэдр и Октаэдр.


^ Таблица 3. Многогранники – лептоны.


Частица

µ-

е-

ν e

ν μ

Разница

Грани

12

6

-8

20

12 - (6-8+20 ) = 6

Вершины

20

8

-6

12

20 - ( 8 -6+12) = - 6

Ребра

30

12

-12

30

30 - (12-12+30) = 0
  1   2   3   4   5




Похожие:

И. А. Болдов геометрическая теория строения материи и пространства iconИскривленность пространства-времени, и решение вопроса темной материи. Ущеко Вячеслав
Искривленность пространства определяется не только неравенством 180 градусам сумме углов в треугольнике, но и наличием какого то...
И. А. Болдов геометрическая теория строения материи и пространства iconС. 10. «… аксиома неразделимости пространства, материи», пространства «и времени.»
В аксиоматичекской науке – математике. Здесь аксиома задаёт «правила игры» и действует только в этой «игре», не претендуя на исключительность:...
И. А. Болдов геометрическая теория строения материи и пространства iconДокументы
1. /Новая теория строения.doc
И. А. Болдов геометрическая теория строения материи и пространства iconПроблемы теории пространства, времени и материи (М.: Атомиздат, 1968.– фрагменты из книги) стр. 157
Как изменяется гравитационное взаимодействие со временем? В результате каких процессов?
И. А. Болдов геометрическая теория строения материи и пространства iconДокументы
1. /Тест по теме теория хим строения огр веществ.doc
И. А. Болдов геометрическая теория строения материи и пространства iconК. Э. Циолковский о строении мира, природе материи и света (отрывки из книги К. Э. Циолковский "Очерки о Вселенной", Калуга: Золотая аллея, 2001) стр. 100 Свойства материи и динамика неба
Изучение свойств вещества неизбежно приводит нас к заключению о периодичности вселенной. Обратим же внимание на свойства материи
И. А. Болдов геометрическая теория строения материи и пространства iconК. Э. Циолковский о строении мира, природе материи и света (отрывки из книги К. Э. Циолковский "Очерки о Вселенной", Калуга: Золотая аллея, 2001) стр. 100 Свойства материи и динамика неба
Изучение свойств вещества неизбежно приводит нас к заключению о периодичности вселенной. Обратим же внимание на свойства материи
И. А. Болдов геометрическая теория строения материи и пространства iconСпециалистам технарям
Говорит цуп ядра зоны слияния матричных пространственных слияний всех форм материи СуперПространства первого порядка со сформирован­ными...
И. А. Болдов геометрическая теория строения материи и пространства iconЦель работы ресурсного центра
Стимулирование развития здоровьесберегающего образовательного пространства функционирующего на основе идеологии общемедицинской грамотности,...
И. А. Болдов геометрическая теория строения материи и пространства iconВыполнили Клявузова Юлия и Пакунова Юлия ученицы 11класса школы №5 г. Тутаева Содержание
Фундаментальная основа теории химической связи теория химического строения Александра Михайловича Бутлерова (1861г)
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов