I. Симметрия в математике icon

I. Симметрия в математике



НазваниеI. Симметрия в математике
Дата конвертации07.07.2012
Размер111.09 Kb.
ТипДокументы




Содержание:

I. Симметрия в математике:

  1. Основные понятия и определения.

  2. Осевая симметрия (определения, план построения, примеры)

  3. Центральная симметрия (определения, план построения, при­меры)

  4. Обобщающая таблица (все свойства, особенности)

II. Применения симметрии:

1) в математике

2) в химии

3) в биологии, ботанике и зоологии

4) в искусстве, литературе и архитектуре



^

1. Основные понятия симметрии и ее виды.


Понятие симметрии проходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого ор­ганизма, а именно человека. И употреблялось скульпторами ещё в 5 веке до н. э. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”. Его широко используют все без исключения направления современной науки. Об этой закономерности задумывались многие ве­ликие люди. Например, Л. Н. Толстой говорил: “Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия по­нятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?”. Действительно симметричность приятна глазу. Кто не любо­вался симметричностью творений природы: листьями, цветами, птицами, живот­ными; или творениями человека: зданиями, техникой, – всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии. Герман Вейль сказал: “Симмет­рия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким обра­зом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное.
Мы же обратимся и еще раз вспомним те определения, которые даны нам в учебнике.
^

2. Осевая симметрия.


2.1 Основные определения

Определение. Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендику­лярна к нему. Каждая точка прямой а считается симметричной самой себе.




Определение. Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симмет­рии фигуры. Говорят также, что фигура обладает осевой симметрией.




2.2 План построения





И так, для построения симметричной фигуры относительно прямой от каждой точки проводим перпендикуляр к данной прямой и продлеваем его на такое же рас­стояние, отмечаем полученную точку. Так поступаем с каждой точкой, получаем симметричные вершины новой фигуры. Затем последовательно их соединяем и по­лучаем симметричную фигуру данной относительной оси.



2.3 Примеры фигур, обладающих осевой симметрией.







^

3. Центральная симметрия


3.1 Основные определения

Определение. Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной са­мой себе.



Определение. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.


3.2 План построения

^ Построение треугольника симметричного данному относительно цен­тра О.

Чтобы построить точку, симметричную точке А относи­тельно точки О, достаточно провести прямую ОА (рис. 46) и по другую сторону от точки О от­ложить отрезок, равный отрезку ОА . Иными словами, точки А и ; В и ; С и симметричны относительно некоторой точки О. На рис. 46 по­строен треугольник, симметричный треуголь­нику ABC относительно точки О. Эти треугольники равны.



^ Построение симметричных точек относительно центра.

На рисунке точки М и М1,  N и N1  симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.




Вообще фигуры, симметричные относительно некоторой точки, равны.

3.3 Примеры

Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и паралле­лограмм.




Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диаго­налей.

Прямая также обладает центральной симметрией, однако в отличие от окруж­ности и параллелограмма, которые имеют только один центр симметрии (точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии.

На рисунках показан угол симметричный относительно вершины, отрезок сим­метричный другому отрезку относительно центра А и четырехугольник симметрич­ный относительно своей вершины М.

Примером фигуры, не имеющей центра симметрии, является треугольник.
^

4. Итог урока


Обобщим полученные знания. Сегодня на уроке мы познакомились с двумя основ­ными видами симметрии: центральная и осевая. Посмотрим на экран и системати­зируем полученные знания.

Обобщающая таблица




Осевая симметрия

Центральная симметрия

Особенность

Все точки фигуры должны быть симметричны относительно какой-нибудь прямой.

Все точки фигуры должны, сим­метричны относительно точки, вы­бранной в качестве центра симмет­рии.

Свойства

  1. 1. Симметричные точки лежат на перпендикулярах к прямой.

  2. 2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.

  3. 3. Прямые переходят в прямые, углы в равные углы.

  4. 4. Сохраняются размеры и формы фигур.

  1. 1. Симметричные точки лежат на прямой, проходящей через центр и данную точку фигуры.

  2. 2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.

3. Сохраняются размеры и формы фигур.

Примеры






^

II. Применение симметрии



Математика

На уроках алгебры мы изу­чили графики функций y=x и y=x

На рисунках представлены различные картинки, изо­браженные с помощью вет­вей парабол.


(а) Октаэдр,

(б) ромбический додекаэдр, (в) гексагональной октаэдр.







Русский язык

Печатные буквы русского алфавита тоже обладают различными видами сим­метрий.


В русском языке есть «сим­метричные» слова - палин­дромы, которые  можно чи­тать одинаково в двух на­правлениях.

А Д Л М П Т Ф Ш – вертикальная ось

В Е З К С Э Ю - горизонтальная ось

Ж Н О Х - и вертикальная и горизонтальная

Б Г И Й Р У Ц Ч Щ Я – ни какой оси


^ Радар шалаш Алла Анна


Литература

Могут быть палиндромичес- кими и предложения. Брюсов написал стихотворение "Голос луны", в котором каждая строка - палиндром.


Посмотрите на четверости -шие А.С.Пушкина «Медный всадник». Если провести ли­нию после второй строчки мы можем заметить эле­менты осевой симметрии


А роза упала на лапу Азора.

Я иду с мечем судия. ( Державин)

«Искать такси»

«Аргентина манит негра»,

«Ценит негра аргентинец»,

«Леша на полке клопа нашел».


В гранит оделася Нева;

Мосты повисли над водами;


Темно-зелеными садами

Ее покрылись острова…

Биология

Тело человека построено по принципу двусторонней симметрии. Большинство из нас рассматривает мозг как единую структуру, в дейст­вительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответст­вии с общей симметрией тела человека каждое по­лушарие представляет со­бой почти точное зеркаль­ное отображение другого


Управление основными движениями тела человека и его сенсорными функ­циями равномерно распре­делено между двумя полу­шариями мозга. Левое по­лушарие контролирует пра­вую сторону мозга, а правое - левую сторону.









Содержание



Ботаника

Цветок считается симмет­ричным, когда каждый око­лоцветник состоит из рав­ного числа частей. Цветки, имея парные части, счита­ются цветками с двойной симметрией и т.д. Тройная симметрия обычна для од­нодольных растений, пя­терная - для двудольных Характерной чертой строе­ния растений и их развития является спиральность.

Обратите внимание на по­беги листорасположения – это тоже своеобразный вид спирали – винтовая. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявле­нием самой сокровенной сущности жизни. Спи­рально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спи­рали расположены семечки в подсолнечнике, спираль­ные движения наблюда­ются при росте корней и побегов.





Характерной чертой строения растений и их раз­вития является спиральность.




Посмотрите на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно — по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.


Содержание




Зоология

Под симметрией у живот­ных понимают соответствие в размерах, форме и очерта­ниях, а также относительное расположение частей тела, находящихся на противопо­ложных сторонах разде­ляющей линии. При ради­альной или лучистой сим­метрии тело имеет форму короткого или длинного ци­линдра либо сосуда с цен­тральной осью, от которого отходят в радиальном по­рядке части тела. Это ки­шечнополостные, иглоко­жие, морские звёзды. При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.





Осевая симметрия







Физика

Различные виды симметрии физических явлений: сим­метрия электрического и магнитного полей (рис. 1)

Во взаимно перпендику­лярных плоскостях симмет­рично распространение электромагнитных волн (рис. 2)



рис.1 рис.2

Искусство

В произведениях искусства часто можно наблюдать зеркальную симметрию. Зеркальная" симметрия ши­роко встречается в произве­дениях искусства прими­тивных цивилизаций и в древней живописи. Средне­вековые религиозные кар­тины также характеризу­ются этим видом симмет­рии.

Одно из лучших ранних произведений Рафаэля – «Обручение Марии» - соз­дано в 1504 году. Под сол­нечным голубым небом раскинулась долина, увен­чанная белокаменным хра­мом. На первом плане – об­ряд обручения. Первосвя­щенник сближает руки Ма­рии и Иосифа. За Марией – группа девушек, за Иоси­фом – юношей. Обе части симметричной композиции скреплены встречным дви­жением персонажей. На со­временный вкус компози­ция такой картины скучна, поскольку симметрия слишком очевидна.







Содержание




Химия

Молекула воды имеет плос­кость симметрии (прямая вертикальная линия). Ис­ключительно важную роль в мире живой природы иг­рают молекулы ДНК (де­зоксирибонуклеиновая ки­слота). Это двуцепочечный высокомолекулярный по­лимер, мономером которого являются нуклеотиды. Мо­лекулы ДНК имеют струк­туру двойной спирали, по­строенной по принципу комплементарности.





Архитектура

Издавна человек использо­вал симметрию в архитек­туре. Особенно блиста­тельно использовали сим­метрию в архитектурных сооружениях древние зод­чие. Причем древнегрече­ские архитекторы были убеждены, что в своих про­изведениях они руково­дствуются законами, кото­рые управляют природой. Выбирая симметричные формы, художник тем са­мым выражал свое понима­ние природной гармонии как устойчивости и равно­весия.

В городе Осло, столице Норвегии, есть выразитель­ный ансамбль природы и художественных произве­дений. Это Фрогнер – парк – комплекс садово-парко­вой скульптуры, который создавался в течение 40 лет.






Дом Пашкова Лувр ( Париж)


Содержание




© Сухачева Елена Владимировна, 2008-2009гг.




Похожие:

I. Симметрия в математике iconСимметрия по вертикали: основание параллелограмм медиана площадь отрезок вершина
По горизонтали: координата конус квадрат пространство ромб диаметр радиус треугольник диагональ 10. Симметрия
I. Симметрия в математике iconРабочая программа по математике в 8 классе, Петрунина Ивана Николаевича, учителя I квалификационной категории
Данная рабочая программа разработана на основе стандарта основного общего образования по математике, примерной программы по математике...
I. Симметрия в математике iconОсевая и центральная симметрия Презентация урока геометрии в 8 классе

I. Симметрия в математике iconТема. Симметрия, ее основные виды и проявления
Продолжить формирование представлений о симметрии, ее основных видах и свойствах
I. Симметрия в математике iconРабочая программа по математике 6 класс базовый уровень учитель математики 1 квалификационной категории
Государственного стандарта общего образования, на основе примерной программы основного общего образования по математике, программы...
I. Симметрия в математике iconКвн по математике в начальных классах
Цель: активизация познавательной деятельности обучающихся на уроках и внеклассных занятиях по математике
I. Симметрия в математике iconКонтрольная работа по математике в 5-х классах. Средний уровень обученности учащихся по району составил 91,9 %
Согласно приказу уо от 14 октября 2009 года №531 «О проведении краевой тренировочно-диагностической работы по математике для учащихся...
I. Симметрия в математике iconКонтрольная работа по математике в 6-х классах. Умк №1 Средний уровень обученности учащихся по району составил 89%
Согласно приказу уо от 14 октября 2009 года №531 «О проведении краевой тренировочно-диагностической работы по математике для учащихся...
I. Симметрия в математике iconВнеклассное мероприятие по математике Учитель математики I квалификационной категории
Развитие интеллектуального уровня учащихся, эстетического вкуса и привития интереса к математике
I. Симметрия в математике iconПоложение по ведению тетрадей по математике ( начальная школа )
Для выполнения всех видов обучающих работ по математике учащиеся должны иметь по 2 тетради
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов