Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте icon

Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте



НазваниеТема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте
страница1/5
Дата конвертации22.07.2012
Размер0.62 Mb.
ТипРеферат
  1   2   3   4   5




СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ

Signals and linear systems.

Тема 1. ВВЕДЕНИЕ В ТЕОРИЮ СИГНАЛОВ И СИСТЕМ

Одна из основных задач теории в любой области знаний – найти позицию, с которой объект виден в предельной простоте.

Джосайя Уиллард Гиббс. Американский физик, ХIХ в.

Для понимания истин, предельно простых для теоретиков, нормальному инженеру требуется специальная подготовка.

Роберт Тимофеевич Шарло. Уральский геофизик, ХХ в.


Содержание

1. Общие сведения и понятия. Понятие сигнала. Шумы и помехи. Размерность сигналов. Математическое описание сигналов. Спектральное представление сигналов. Математические модели сигналов. Виды моделей. Классификация сигналов.

2. Типы сигналов. Аналоговый сигнал. Дискретный сигнал. Цифровой сигнал. Преобразования типа сигналов. Графическое отображение сигналов. Тестовые сигналы.

3. Системы преобразования сигналов. Общее понятие систем. Основные системные операции. Линейные системы.

4. Информационная емкость сигналов. Понятие информации. Количественная мера информации. Энтропия источника информации. Основные свойства энтропии Энтропия непрерывного источника информации. Информационная емкость сигналов.

^ 1.1. Общие сведения и понятия [1,10, 15, 25]

Понятие сигнала. В XVIII веке в теорию математики вошло понятие функции, как определенной зависимости какой-либо величины y от другой величины – независимой переменной х, с математической записью такой зависимости в виде у(х). Довольно скоро математика функций стала основой теории всех естественных и технических наук. Особое значение функциональная математика приобрела в технике связи, где временные функции вида s(t), v(f) и т.п., используемые для передачи информации, стали называть сигналами.

В технических отраслях знаний термин "сигнал" (signal, от латинского signum – знак) используется в широком смысловом диапазоне. Под ним понимают и техническое средство для передачи, обращения и использования информации - электрический, магнитный, оптический сигнал; и физический процесс, отображающий информационное сообщение - изменение какого-либо параметра носителя информации (электромагнитных колебаний, светового потока и т.п.) во времени, в пространстве или в зависимости от изменения значений каких-либо других аргументов (независимых переменных); и смысловое содержание определенного физического состояния или процесса, как, например, сигналы светофора, звуковые предупреждающие сигналы и т.п. Все эти понятия объединяет конечное назначение сигналов.
Это определенные сведения, сообщения, информация о каких-либо процессах, состояниях или физических величинах объектов материального мира, выраженные в форме, удобной для передачи, обработки, хранения и использования этих сведений.

Термин “сигнал” часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны, но относятся к разным категориям.

Понятие информации имеет много определений, от наиболее широкого (информация есть формализованное отражение реального мира) до практического (сведения, являющиеся объектом хранения, передачи, преобразования, восприятия и управления). Мировая наука все больше склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира. Что касается “данных” (от латинского datum – факт), то это совокупность фактов, результатов наблюдений, измерения каких-либо физических свойств объектов, явлений или процессов материального мира, представленных в формализованном виде. Это не информация, а сырье для получения информации путем соответствующей обработки и интерпретации (истолкования).

Термин "signal" в мировой практике является общепринятым для характеристики формы представления данных, при которой данные рассматриваются как результат некоторых измерений объекта исследований в виде последовательности значений скалярных величин (аналоговых, числовых, графических и пр.) в зависимости от изменения каких-либо переменных значений (времени, энергии, температуры, пространственных координат, и пр.). А так как данные содержат информацию, как об основных целевых параметрах объекта исследований, так и о различных сопутствующих и мешающих факторах измерений, то в широком смысле этого слова можно считать, что сигнал является носителем общей измерительной информации. При этом материальная форма носителей сигналов (механическая, электрическая, магнитная, акустическая, оптическая и любая другая), равно как и форма отображения данных в каких-либо физических параметрах или процессах носителей, значения не имеет. Информативным параметром сигнала может являться любой параметр носителя сигнала, функционально и однозначно связанный со значениями информационных данных.

Наиболее распространенное представление сигналов - в электрической форме в виде зависимости напряжения от времени U(t). Так, например, сигнал изменения напряженности магнитного поля по профилю аэросъемки – это и временная последовательность изменения электрического напряжения на выходе датчика аэромагнитометра, и запись этого напряжения на ленте регистратора, и последовательные значения цифровых отсчетов при обработке лент регистратора и вводе сигнала в ЭВМ.




Рис. 1.1.1. Сигнал.
С математической точки зрения сигнал представляет собой функцию, т.е. зависимость одной величины от другой, независимой переменной. По содержанию это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды. А целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Под "анализом" сигналов имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов. Целями анализа сигналов обычно являются:

- Определение или оценка числовых параметров сигналов (энергия, средняя мощность, среднее квадратическое значение и пр.).

- Изучение изменения параметров сигналов во времени.

- Разложение сигналов на элементарные составляющие для сравнения свойств различных сигналов.

- Сравнение степени близости, "похожести", "родственности" различных сигналов, в том числе с определенными количественными оценками.

Математический аппарат анализа сигналов весьма обширен, и широко применяется на практике во всех без исключения областях науки и техники.

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал. В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования. Так, при получении информации о физических свойствах каких-либо объектов, под регистрацией сигнала понимают процесс измерения физических свойств объекта и перенос результатов измерения на материальный носитель сигнала или непосредственное энергетическое преобразование каких-либо свойств объекта в информационные параметры материального носителя сигнала (как правило - электрического). Но так же широко термин регистрации сигналов используют и для процессов выделения уже сформированных сигналов, несущих определенную информацию, из суммы других сигналов (радиосвязь, телеметрия и пр.), и для процессов фиксирования сигналов на носителях долговременной памяти, и для многих других процессов, связанных с обработкой сигналов.

Применительно к настоящему курсу под термином регистрации будем понимать регистрацию данных (data logging), которые проходят через конкретную систему или точку системы и определенным образом фиксируются на каком-либо материальном носителе или в памяти системы. Что касается процесса получения информации при помощи технических средств, обеспечивающих преобразование физических величин в сигналы, удобные для обработки и восприятия, то для этого процесса будем применять, в основном, термин детектирования.

Шумы и помехи. При детектировании сигналов, несущих целевую для данного вида измерений информацию, в сумме с основным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различной природы (рис. 1.1.2). Шумы, как правило, имеют случайный (стохастический) характер. К помехам относят стационарные искажения полезных сигналов при влиянии на процессы измерений различных дестабилизирующих факторов (электромагнитные наводки, вибрация, и т.п.). Выделение полезных составляющих из общей суммы зарегистрированных сигналов или максимальное подавление шумов и помех в информационном сигнале при сохранении его полезных составляющих является одной из основных задач первичной обработки результатов наблюдений.




Рис. 1.1.2. Сигнал с помехами.
Виды шумов и помех разделяют по источникам их возникновения, по энергетическому спектру, по характеру воздействия на сигнал, по вероятностным характеристикам и другим признакам. Источники шумов и помех бывают внутренние и внешние.

Внутренние, как правило, присущи физической природе источников и детекторов сигналов, а также их материальных носителей. Например, флюктуации интенсивности излучения радионуклидов в силу статистической природы ядерных процессов, тепловые шумы электронных потоков в электрических цепях, и т.п.

Внешние источники шумов и помех бывают искусственного и естественного происхождения. К искусственным источникам относятся индустриальные помехи и помехи от работающей физико-технической аппаратуры. Естественными источниками являются молнии, флюктуации магнитных полей, всплески солнечной энергии, и т.д. Электрические и магнитные поля различных источников помех вследствие наличия индуктивных, емкостных и резистивных связей создают в цепях сигнальных систем паразитные разности потенциалов и токи, накладывающиеся на полезные сигналы.

Помехи подразделяются на флюктуационные, импульсные и периодические.

Флюктуационные помехи представляют собой хаотические и беспорядочные во времени процессы в виде нерегулярных случайных всплесков различной амплитуды. Как правило, флюктуационные помехи распределены по нормальному закону с нулевым средним.

Импульсные помехи проявляются как в виде отдельных импульсов, так и в виде последовательности импульсов, форма и параметры которых имеют случайный характер. Причинами импульсных помех являются резкие броски тока и напряжения в промышленных установках, транспортных средствах, а также природные электрические явления.

Периодические помехи вызываются электромагнитными полями линий электропередач, силовых электроустановок и др. Если основная мощность помех сосредоточена на отдельных участках диапазона частот, например, на частоте напряжения промышленной сети или кратна этой частоте, то такие помехи называют сосредоточенными.

В зависимости от характера воздействия на сигнал помехи разделяют на аддитивные и мультипликативные. Аддитивные (налагающиеся) помехи суммируются с сигналом, не зависят от его значений и формы и не изменяют информативной составляющей самого сигнала. Мультипликативные или деформирующие помехи могут изменять форму информационной части сигнала, иметь зависимость от его значений и от определенных особенностей в сигнале и т.п. При известном характере мультипликативных помех возможна коррекция сигнала на их влияние.

Следует заметить, что деление сигналов на полезные и мешающие (шумовые) является достаточно условным. Источниками мешающих сигналов также могут быть определенные физические процессы, явления или объекты. При выяснении природы мешающих сигналов они могут переводиться в разряд информационных. Так, например, вариации диаметра скважин и каверны является мешающим фактором практически для всех методов каротажа. Вместе с тем этот же фактор, при соответствующем методическом и аппаратурном обеспечении, может дать возможность бесконтактного определения диаметра скважин в качестве дополнительного информационного параметра.

Размерность сигналов. Простейшими сигналами геофизической практики являются одномерные сигналы, как, например, сейсмические импульсы s(t), измерения каких-либо параметров геофизических полей (электрических, магнитных, и пр.) по профилям на поверхности земли s(x) или по стволу скважины s(h), и т.п. Значения одномерных сигналов зависят только от одной независимой переменной, как, например, на рис. 1.1.1 и 1.1.2.




Рис. 1.1.3. Двумерный сигнал.
В общем случае сигналы являются многомерными функциями пространственных, временных и прочих независимых переменных - сейсмическая волна вдоль линии профиля s(x,t), аномалия гравитационного поля на поверхности наблюдений s(x,y), пространственно - энергетическое распределение потока ионизирующих частиц или квантов от источника излучения s(x,y,z,Е) и т.п. Все большее применение находят также многомерные сигналы, образованные некоторым множеством одномерных сигналов, как, например, комплексные каротажные измерения нескольких физических параметров горных пород по стволу скважины одновременно.

Многомерные сигналы могут иметь различное представление по своим аргументам. Так, полный акустический сигнал сейсмического профиля дискретен по пространству (точкам расположения приемников) и непрерывен по времени.

Многомерный сигнал может рассматриваться, как упорядоченная совокупность одномерных сигналов. С учетом этого при анализе и обработке сигналов многие принципы и практические методы обработки одномерных сигналов, математический аппарат которых развит достаточно глубоко, распространяются и на многомерные сигналы. Физическая природа сигналов для математического аппарата их обработки значения не имеет.

Вместе с тем обработка многомерных сигналов имеет свои особенности, и может существенно отличаться от одномерных сигналов в силу большего числа степеней свободы. Так, при дискретизации многомерных сигналов имеет значение не только частотный спектр сигналов, но и форма растра дискретизации. Пример не очень полезной особенности - многомерные полиномы сигнальных функций, в отличие от одномерных, не разлагаются на простые множители. Что касается порядка размерности многомерных сигналов, то ее увеличение выше двух практически не изменяет принципы и методы анализа данных, и сказывается, в основном, только на степени громоздкости формул и чисто техническом усложнении вычислений.

Учитывая эти факторы, при рассмотрении общей теории анализа, преобразований и обработки сигналов ограничимся, в основном, одно- и двумерными сигнальными функциями. В качестве универсальных независимых переменных (аргументов функций) будем использовать, как правило, переменную "t" для одномерных сигналов и переменные "x,t" или "x,y" для двумерных сигналов, безотносительно к их физическому содержанию (пространство, время, энергия и пр.).

Математическое описание сигналов. Сигналы могут быть объектами теоретических исследований и практического анализа только в том случае, если указан способ их математического описания. Математическое описание позволяет абстрагироваться от физической природы сигнала и материальной формы его носителя, проводить классификацию сигналов, выполнять их сравнение, устанавливать степень тождества, моделировать системы обработки сигналов.

Большинство сигналов, встречающихся на практике, представлены во временной области функциями времени. При отображении сигналов на графике одной из координат (независимой) является ось времени, а другой координатой (зависимой) – ось амплитуд. Тем самым мы получаем амплитудно-временное представление сигнала. В общем случае описание сигнала задается функциональной зависимостью определенного информационного параметра сигнала от независимой переменной (аргумента) – s(х), y(t) и т.п. Такая форма описания и графического представления сигналов называется динамической (сигнал в реальной динамике его поведения по аргументам). Функции математического описания сигналов могут быть как вещественными, так и комплексными. Выбор математического аппарата описания определяется простотой и удобством его использования при анализе и обработке сигналов.

Отметим двойственность применения описания сигналов функциями типа s(t) и т.п. С одной стороны s(t) – это величина, равная значению функции в момент времени t. С другой стороны мы обозначаем через s(t) и саму функцию, т.е. то правило, по которому каждому значению t ставится в соответствие определенная величина s. В большинстве аналитических выражений это не вызывает недоразумений и при однозначном соответствии значений сигналов их аналитическим выражениям принимается по умолчанию.

Сделаем также одно замечание по терминологии описания сигналов. В теоретических работах по анализу сигналов конкретные значения величины сигнала (отсчеты значений по аргументу) часто именуют координатами сигнала. В отраслях знаний, связанных с геологией и горным делом, и в геофизической практике в том числе, этот термин используется по своему прямому смысловому назначению – пространственных координат результатов измерений, и является неизменным атрибутом всех геолого-геофизических данных. С учетом последнего фактора условимся применять термин “координата” по своему традиционному смысловому назначению в качестве обобщающего термина для независимых переменных сигнальных функций. При этом под понятием координат значений сигнала будем понимать не только какие-либо пространственные координаты, как это непосредственно имеет место для результатов измерений при геолого-геофизических съемках, но и любые другие аргументы, на числовой оси которых отложены значения или отсчеты сигнала и рассматривается динамика его изменения (пример на рис. 1.1.1).

Спектральное представление сигналов. Кроме динамического представления сигналов и функций в виде зависимости их значений от определенных аргументов при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, не имеющий разрывов второго рода (бесконечных значений на интервале своего задания), можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу – частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз – фазовым спектром. Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник частотного спектра сигнала. Широкое использование гармонических функций при анализе сигналов объясняется тем, что они являются достаточно простыми ортогональными функциями и определены при всех значениях непрерывных переменных. Кроме того, они являются собственными функциями времени, сохраняющими свою форму при прохождении колебаний через любые линейные системы и системы обработки данных с постоянными параметрами (изменяются только амплитуда и фаза колебаний). Немаловажное значение имеет и то обстоятельство, что для гармонических функций и их комплексного анализа разработан мощный математический аппарат.

Примеры частотного представления сигналов приводятся ниже (рис. 1.1.5 – 1.1.12).

Кроме гармонического ряда Фурье применяются и другие виды разложения сигналов: по функциям Уолша, Бесселя, Хаара, полиномам Чебышева, и др. Главное условие однозначности и математической идентичности отображения сигналов - ортогональность функций разложения. При качественном анализе сигналов могут применяться и неортогональные функции, выявляющие какие-либо характерные особенности сигналов, полезные для интерпретации физических данных.

Математические модели сигналов. Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов, на основе которых создаются математические модели сигналов. Математические модели сигналов дают возможность обобщенно, абстрагируясь от физической природы, судить о свойствах сигналов, предсказывать изменения сигналов в изменяющихся условиях, заменять физическое моделирование процессов математическим. С помощью математических моделей имеется возможность описывать свойства сигналов, которые являются главными в изучаемых процессах, и игнорировать большое число второстепенных признаков. Знание математических моделей сигналов дает возможность классифицировать их по различным признакам, характерным для того или иного типа моделей. Так, сигналы разделяются на неслучайные и случайные в зависимости от возможности точного предсказания их значений в любые моменты времени. Сигнал является неслучайным и называется детерминированным, если математическая модель позволяет осуществлять такое предсказание. Детерминированный сигнал задается, как правило, математической функцией или вычислительным алгоритмом, а математическая модель сигнала может быть представлена в виде

s = F(t, z, ,…; A, B, C,…),

где s – информативный параметр сигнала; t, z, w, … – независимые аргументы (время, пространственная координата, частота и др.); A, B, C… – параметры сигналов.

Модель должна быть, по возможности, проще, минимизирована по количеству независимых аргументов и адекватна изучаемому процессу. Рассмотрим этот вопрос на примере геофизических данных.

Под геофизическим полем понимают собственное или индуцированное определенным внешним воздействием распределение какой-либо физической величины, создаваемое геологическим объектом или геологической структурой в пространстве, во времени или по любому другому аргументу (независимой переменной). В простейшем случае геофизический сигнал - это изменение какой-либо составляющей геофизического поля, т.е. сечение поля по одному из аргументов. В пределе геофизическое поле в целом может рассматриваться как первичный многомерный сигнал в прямом физическом отображении, с которого путем измерений могут сниматься формализованные копии определенных составляющих (сечений) сигнала на материальные носители информации.

Геофизическим полям в определенных условиях их регистрации соответствуют определенные математические модели сигналов, т.е. их описание на каком-либо формальном языке. Математическое описание не может быть всеобъемлющим и идеально точным и, по существу, всегда отображает не реальные объекты, а их упрощенные (гомоморфные) модели. Модели могут задаваться таблицами, графиками, функциональными зависимостями, уравнениями состояний и переходов из одного состояния в другое и т.п. Формализованное описание может считаться математической моделью оригинала, если оно позволяет с определенной точностью прогнозировать состояние и поведение изучаемых объектов путем формальных процедур над их описанием.

Неотъемлемой частью любой математической модели сигнала является область определения сигнала, которая устанавливается интервалом задания независимой переменной. Примеры задания интервала для переменных:

a ≤ x ≤ b, x  [a, b].

a < y ≤ b, y  (a, b].

a < z < b, z  (a, b).

Пространство значений независимой переменной обычно обозначается через индекс R. Так, например, R:=(- , +), x  R.

Кроме задания области определения сигнала могут быть также заданы виды численных значений переменных (целые, рациональные, вещественные, комплексные).

Математические модели полей и сигналов на первом этапе обработки и анализа результатов наблюдений должны позволять в какой-то мере игнорировать их физическую природу и возвращать ее в модель только на заключительном этапе интерпретации данных.

  1   2   3   4   5




Похожие:

Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconТема: информационная модель объекта
Объект исследования (оригинал или прототип) это любой материальный или нематериальный объект (процесс), или природное явление
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconТема пространство и метрология сигналов физическая величина более точно определяется уравнением, чем измерением
Пространство сигналов. Множества сигналов. Линейное пространство сигналов. Норма сигналов. Метрика сигналов. Скалярное произведение...
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconЮ. М. Лотман о семиосфере*
Соссюру, с предельной четкостью выразил покойный И. И. Ревзин, предложивший в прениях на второй Летней школе по вторичным моделирующим...
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconЕ. А., 2010 «семь солнечных систем, одна из которых – наша». Современные данные
Поскольку сделаны некоторые новые открытия в астрономии экзопланет, необходимо внести дополнения в тему «Семь солнечных систем, одна...
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconДокументы
1. /Давенпорт В.Б. Введение в теорию случайных сигналов и шумов. 1960.djvu
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconДокументы
1. /Лёзин Ю.С.Введение в теорию и технику радиотехнических систем.1986.djvu
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconДокументы
1. /Лёзин Ю.С. Введение в теорию и технику радиотехнических систем. 1986.djvu
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconТема : Проверка закономерностей методом рассуждений
В конце цепочки стоит одна из бусин A, B, C. На первом месте – одна из бусин B, D, C, которой нет на третьем месте. В середине –...
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте icon1. Введение Системы на основе продукционных баз знаний
Эволюционное проектирование электронных и электрических цепей новая область научных исследований, базирующаяся на исследованиях в...
Тема введение в теорию сигналов и систем одна из основных задач теории в любой области знаний найти позицию, с которой объект виден в предельной простоте iconРекомендации по оценке знаний
Причем при проверке уровня усвоения материала по каждой достаточно большой теме обязательным является оценивание трех основных элементов:...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов