Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи icon

Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи



НазваниеТема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи
страница1/3
Дата конвертации22.07.2012
Размер391.37 Kb.
ТипРеферат
  1   2   3




СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ

Signals and linear systems. Sampling of signal

Тема 7. ДИСКРЕТИЗАЦИЯ СИГНАЛОВ


Все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет - плохи.

Публий Теренций. Римский драматург, II в.д.н.э.

Студентом не раз пытался равномерно дискретизировать палку ливерной колбасы. Никогда не получалось. Свой кусок всегда был на рубль длиннее и на полтинник толще.

Александр Кудрявцев. Уральский геофизик и конструктор, XX в.

Содержание

1. Задачи дискретизации функций. Сигналы и системы дискретного времени. Принципы дискретизации. Воспроизведение сигнала.

2. Равномерная дискретизация. Спектр дискретного сигнала. Интерполяционный ряд Котельникова-Шеннона. Дискретизация с усреднением. Дискретизация спектров. Информационная тождественность динамической и спектральной формы сигнала. Дискретизация усеченных сигналов. Соотношение спектров одиночного и периодического сигналов.

3. Дискретизация по критерию наибольшего отклонения.

4. Адаптивная дискретизация.

5. Квантование сигналов.

6. Децимация и интерполяция данных.

Введение.

В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.

Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.


Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации. Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.

^ 7.1. Задачи дискретизации функций [10, 21].

Сигналы и системы дискретного времени. Значения дискретного сигнала определены только при дискретных значениях времени или любой другой независимой переменной. Обычно его представляют в виде последовательности чисел: s(k)  s(kt)  sk, k = 0, 1, 2, …, K, где значениями чисел отображают значения сигнала в дискретные моменты времени. Значения интервала дискретизации обычно принято опускать, т.е. принимать равным t = 1, поскольку он является не более чем масштабным множителем по независимой переменной и при постоянном значении во всех параметрах и атрибутах обработки сигналов, включая сопряженные величины (например, масштаб частоты f=1/|t|), его физическая величина может вводиться в результаты на заключительной стадии обработки данных. По существу, при t=1 осуществляется нормирование сигналов и систем их обработки по независимой переменной.

Система дискретного времени – это алгоритм с входной последовательностью s(k) и выходной последовательностью y(k), которая может быть линейной или нелинейной, инвариантной или изменяющейся во времени. Система дискретного времени линейна и инвариантна во времени (ЛИВ-система), если она подчиняется принципу суперпозиции (отклик на несколько входов равен сумме откликов на каждый вход в отдельности), а задержка (сдвиг) входного сигнала вызывает такую же задержку выходного сигнала. Вход и выход ЛИВ-систем связывает сверточная сумма:

y(k) =h(n) x(k-n),

где h(n) – дискретная импульсная характеристика (импульсный отклик) системы. Система устойчива, если выполняется условие:

|h(n)| < ∞.

Это условие справедливо всегда для систем с конечной импульсной характеристикой (КИХ-систем) без особых точек в своем составе, что характерно для нерекурсивных систем с ограниченным числом отсчетов (в общем случае, N1 < n < N2), а также для систем с бесконечной импульсной характеристикой (БИХ-систем), если h(n) → 0 при n → ∞, что должно выполняться для рекурсивных систем.

Физически реализуемой называется система, если ее импульсная характеристика существует только при n≥0.

Принципы дискретизации. Сущность дискретизации аналоговых сигналов заключается в том, что непрерывность во времени аналоговой функции s(t) заменяется последовательностью коротких импульсов, амплитудные значения которых cn определяются с помощью весовых функций, либо непосредственно выборками (отсчетами) мгновенных значений сигнала s(t) в моменты времени tn.Представление сигнала s(t) на интервале Т совокупностью дискретных значений cn записывается в виде:

1, с2, ... , cN) = А[s(t)],

где А - оператор дискретизации. Запись операции восстановления сигнала s(t):

s'(t) = В[(с1, с2, ... , cN)].

Выбор операторов А и В определяется требуемой точностью восстановления сигнала. Наиболее простыми являются линейные операторы. В общем случае:

сn =qn(t) s(t) dt, (7.1.1)

где qn(t) - система весовых функций.

Отсчеты в выражении (7.1.1) связаны с операцией интегрирования, что обеспечивает высокую помехоустойчивость дискретизации. Однако в силу сложности технической реализации "взвешенного" интегрирования, последнее используется достаточно редко, при высоких уровнях помех. Более широкое распространение получили методы, при которых сигнал s(t) заменяется совокупностью его мгновенных значений s(tn) в моменты времени tn. Роль весовых функций в этом случае выполняют гребневые (решетчатые) функции. Отрезок времени t между соседними отсчетами называют шагом дискретизации. Дискретизация называется равномерной с частотой F=1/t, если значение t постоянно по всему диапазону преобразования сигнала. При неравномерной дискретизации значение t между выборками может изменяться по определенной программе или в зависимости от изменения каких-либо параметров сигнала.

Воспроизведение непрерывного сигнала по выборкам может проводиться как на основе ортогональных, так и неортогональных базисных функций. Воспроизводящая функция s'(t) соответственно представляется аппроксимирующим полиномом:

s'(t) =cn vn(t), (7.1.2)

где vn(t) - система базисных функций. Ортогональные базисные функции обеспечивают сходимость ряда к s(t) при n  . Оптимальными являются методы дискретизации, обеспечивающие минимальный числовой ряд при заданной погрешности воспроизведения сигнала. При неортогональных базисных функциях используются, в основном, степенные алгебраические полиномы вида:

s'(t) =cn tn. (7.1.3)

Если значения аппроксимирующего полинома совпадают со значениями выборок в моменты их отсчета, то такой полином называют интерполирующим. В качестве интерполирующих полиномов обычно используются многочлены Лагранжа. Для реализации интерполирующих полиномов необходима задержка сигнала на интервал дискретизации, что в системах реального времени требует определенных технических решений. В качестве экстраполирующих полиномов используют, как правило, многочлены Тейлора.

Естественным требованием к выбору частоты дискретизации является внесение минимальных искажений в динамику изменения сигнальных функций. Логично полагать, что искажения информации будут тем меньше, чем выше частота дискретизации F. С другой стороны также очевидно, что чем больше значение F, тем большим количеством цифровых данных будут отображаться сигналы, и тем большее время будет затрачиваться на их обработку. В оптимальном варианте значение частоты дискретизации сигнала F должно быть необходимым и достаточным для обработки информационного сигнала с заданной точностью, т.е. обеспечивающим допустимую погрешность восстановления аналоговой формы сигнала (среднеквадратическую в целом по интервалу сигнала, либо по максимальным отклонениям от истинной формы в характерных информационных точках сигналов).

^ 7.2. Равномерная дискретизация [16,21].

Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномерная дискретизация непрерывного сигнала s(t) с частотой F (шаг t = 1/F) с математических позиций означает умножение функции s(t) на гребневую функцию Шt(t) =(t-kt) – непрерывную последовательность импульсов Кронекера:

st(t) = s(t)Шt(t) = s(t)(t-kt) =s(kt)(t-kt). (7.2.1)

С учетом известного преобразования Фурье гребневой функции

Шt(t)  (1/T)(f-nF) = F·ШF(f), (7.2.2)

фурье-образ дискретной функции st(t):

SF(f) = S(f) * FШF(f). (7.2.3)

Отсюда, для спектра дискретного сигнала имеем:

SF(f) = FS(f) *(f-nF) = FS(f-nF). (7.2.4)

Из выражения следует, что спектр дискретного сигнала представляет собой непрерывную периодическую функцию с периодом F, совпадающую (при определенных условиях конечности спектра непрерывного сигнала) с функцией FS(f) непрерывного сигнала s(t) в пределах центрального периода от -fN до fN, где fN = 1/2t = F/2. Частоту fN (или для круговой частоты N = /t) называют частотой Найквиста. Центральный период функции SF(f) называют главным частотным диапазоном.

Интуитивно понятно, что если спектр главного частотного диапазона с точностью до постоянного множителя совпадает со спектром непрерывного сигнала, то по этому спектру может быть восстановлена не только форма дискретного сигнала, но и форма исходного непрерывного сигнала. При этом шаг дискретизации и соответствующее ему значение частоты Найквиста должны иметь определяющее значение.

Как правило, шаг дискретизации сигнала (шаг числовых массивов) условно принимают равным t = 1, при этом главный частотный диапазон занимает интервал -0.5  f  0.5, или, в шкале угловых частот соответственно -.

Физическая сущность формирования спектров дискретных сигналов достаточно проста. Наиболее наглядно это можно увидеть, если воспользоваться программой Mathcad (см. рис. 7.2.1).




Рис. 7.2.1. Формирование спектра дискретного сигнала.
Сначала представим себе непрерывный сигнал постоянной единичной амплитуды c(t) = const = 1 на произвольном интервале 0-Т, например, при Т=100. Начнем дискретизировать сигнал с равномерным шагом t=1. Вычислим спектр первого дискретного отсчета c0 = 1. При N=1 сигнал является импульсом Кронекера, а, соответственно, модуль спектра отсчета с0=1 представляет собой непрерывное частотное распределение |С()| = const в диапазоне от - до + (показан только участок от -6 до +6 с нормировкой на N для наглядности сравнения спектров). Все частоты сигнала имеют нулевую фазу и при сложении взаимно компенсируются во всех временных точках за исключением точки t=0, в которой амплитуды частот суммируются, создавая единичный отсчет с0.

Добавим к сигналу второй дискретный отсчет с1=1 (N=2). Если вычислить спектр только второго отсчета, то его модуль будет равен модулю первого отсчета (так как с10), но нулевые фазы гармоник этого спектра переместятся в точку t=1, т.е. относительно точки t=0 фазы гармоник второго отсчета изменятся на -t в соответствии с теоремой запаздывания преобразования Фурье. При сложении этих двух спектров первого и второго отсчета наблюдается интерференция частот и возникают пульсации частотного спектра с максимумами на частотах, кратных F=1/t или в угловых единицах 2/t, где фазы спектров первого и второго отсчетов совпадают и равны нулю. Форма модуля результирующего спектра при N=2 приведена на рисунке.

При дальнейшем увеличении количества отсчетов периодичность совпадения нулевых фаз и положения максимумов сохраняется, а интерференция частот между максимумами усложняется, при этом ширина главных пиков по всему частотному диапазону спектра от минус до плюс бесконечности становится все уже. На рис. 7.2.1 приведены примеры спектров сигналов при N=10 и N=50. В пределе, при двусторонней временной шкале ±Т ± и N , гребневая функция из импульсов Кронекера во временной области ct  Шt(t) =(t-kt) превращается в идеальную гребневую функцию (1/T)(f-nF) = F·ШF(f) в частотной области (формула 7.2.2). Этот спектр непрерывен и физически реален в диапазоне частот от - до +.

Физический смысл интерференции частот остается тем же самым, если мы на произвольном интервале Т зададим произвольный сигнал, например – синусоиду u(t)  U(f), и выполним его дискретизацию, т.е. умножим сигнал на непрерывную последовательность импульсов Кронекера c(t)u(t)  u(t)(t-kt) = u(t) Шt(t). А так как каждый дискретный отсчет в этом случае имеет свою определенную амплитуду и, соответственно, свой уровень амплитуд гармоник своего спектра, то сложение частот дает более сложную картину интерференции с расщеплением спектра общего сигнала всех дискретных отсчетов на две зеркальных составляющих относительно кратных частот 2/t.




Рис. 7.2.2. Формирование спектра дискретного сигнала.
Математически произведение двух функций во временной области отображается сверткой спектров этих функций в частотном представлении, т.е. сверткой спектра сигнала u(t) с частотной гребневой функцией спектра, порожденной временной гребневой функцией дискретизации u(t)Шt(t)  U(f) * FШF(f), откуда и следует формула (7.2.4). Пример дискретизации одного периода синусоиды приведен на рис. 7.2.2.

Вернемся к значению и роли частоты Найквиста при дискретизации сигналов.

На рис. 7.2.3 и 7.2.4. приведены примеры равномерной дискретизации аналоговых сигналов s1(t) = exp(-a|t|) и s2(t) = exp(-bt2) (дискретные отсчеты нанесены кружками) и спектры этих дискретных сигналов.



Рис. 7.2.3. Дискретные сигналы. Рис. 7.2.4. Спектры дискретных сигналов.

Для того чтобы периодическое повторение спектра, вызванное дискретизацией аналогового сигнала, не изменяло спектр в главном частотном диапазоне (по отношению к спектру исходного аналогового сигнала), необходимо и достаточно, чтобы максимальные частотные составляющие fmax в спектре аналогового сигнала не превышали частоты Найквиста (fmax  fN = F/2). Это означает, что частота дискретизации сигнала должна быть минимум в два раза выше максимальной частотной составляющей в спектре сигнала:

F = 1/t  2fmax, (7.2.5)

что обеспечивает выход спектра на нулевые значения на концах главного диапазона, как это имеет место для спектра S2() на рис. 7.2.4.

Другими словами, на одном периоде колебаний с частотой fmax должно быть минимум две точки отсчета. Это и понятно – по одной точке отсчета на периоде гармонического сигнала определение неизвестных параметров данной гармоники (амплитуда, фаза) невозможно.

Если условие (7.2.5) нарушается, искажения частотного спектра исходного аналогового сигнала неизбежны. На рис. 7.2.4 наглядно видно, что частота дискретизации для сигнала s1(t) данному условию не удовлетворяет, спектры периодов перекрылись, и результирующий спектр дискретных отсчетов сигнала s1(t) отличается от фактического спектра сигнала (фактический спектр и его периодические повторения в области перекрытия спектра главного частотного диапазона со спектрами боковых диапазонов показаны пунктиром). Аналоговый сигнал из спектра S1() будет восстановлен с искажениями.

Характер возникающих искажений во временной области при нарушении условия (7.2.5) можно наглядно видеть на рис. 7.2.5. На рисунке показаны три возможных варианта соотношения частот гармонических сигналов с постоянной частотой их дискретизации.

1. График А – частота гармонического сигнала меньше частоты Найквиста. Дискретным отсчетам может соответствовать только исходная гармоника, амплитуда, частота и фаза которой могут быть однозначно определены по любым трем последовательным точкам (три уравнения, три неизвестных).

2. График В – частота гармонического сигнала равна частоте Найквиста. Это означает периодическое повторение каждой пары последовательных отсчетов, а, следовательно, для решения имеется только два уравнения с тремя неизвестными с возможностью определения только частоты, и то при условии, что начальная фаза сигнала не совпадает с начальной фазой частоты дискретизации (в этом случае все отсчеты нулевые). Амплитуда и фаза сигнала определяются однозначно только при условии совпадения отсчетов с экстремумами гармоники.



Рис. 7.2.5. Дискретизация гармоник с разной частотой.

3. График С – частота гармонического сигнала больше частоты Найквиста. Решение трех уравнений по трем последовательным точкам позволяет определить амплитуду гармоники, но дает искаженные значения частоты и фазы колебания (показано пунктиром). Это так называемый эффект появления ложных (кажущихся) частот (aliasing). Частоты гармонических колебаний выше частоты Найквиста как бы зеркально "отражаются" в главный частотный диапазон от его границ (на частоте Найквиста), что можно видеть на рис. 7.2.4 для действительного спектра сигнала S1(), показанного точками. Этот эффект аналогичен всем известному эффекту обратного вращения колес автомобиля (и любых других быстро вращающихся объектов) на экранах кино и телевизоров, когда скорость их вращения начинает превышать частоту смены кадров.

Интерполяционный ряд Котельникова-Шеннона. Спектр дискретизированного сигнала (7.2.4) представляет собой сумму сдвинутых копий исходного аналогового сигнала с шагом сдвига, равным частоте дискретизации. Очевидно, что если спектры копий не перекрываются, то по центральной копии дискретного спектра можно восстановить исходный аналоговый сигнал с абсолютной точностью. Умножая функцию (7.2.3) на прямоугольную весовую функцию ПF(f), равную 1 в пределах главного частотного диапазона [-F/2,F/2] и нулю за его пределами, получаем непрерывный спектр в бесконечных по частоте границах, равный спектру FS(f) в пределах главного частотного диапазона:

FS(f) = F[S(f) * ШF(f)]ПF(f). (7.2.6)

Обратное преобразование Фурье такого спектра должно давать конечный и непрерывный сигнал. Произведем обратное преобразование обеих частей равенства (7.2.6):

F·[S(f) * ШF(f)] st(t), ПF(f) Fsinc(Ft).

Fs(t) = st(t) * Fsinc(Ft).

s(t) = sinc(Ft) *s(kt)(t-kt),

Дискретизированный сигнал st(t) =s(kt)(t-kt) представляет собой сумму последовательных весовых импульсов Кронекера, сдвинутых на интервал t, со значениями веса, равными значениям отсчетов функции s(t) в моменты kt. При прохождении такого сигнала через систему с импульсным откликом h(t)= sinc(Ft)= sin(Ft)/Ft каждый весовой импульс Кронекера возбудит на выходе соответствующую последовательную серию сдвинутых и масштабированных копий оператора фильтра. Отсюда, с учетом очевидного равенства

(t-kt) * sinc(Ft) = sinc[F(t-kt)],

выходной сигнал будет представлять собой сумму сдвинутых весовых импульсных откликов системы, где значение веса определяется отсчетами дискретного сигнала:

s(t) =s(kt) sinc[F(t-kt)] =s(kt) sinc[(t/t-k)]. (7.2.7)

Эта конечная формула носит название интерполяционного ряда Котельникова-Шеннона. Из нее следует, что если наибольшая частота в спектре произвольной непрерывной функции s(t) не превышает частоты ее дискретизации, то она без потери точности может быть представлена в виде числовой последовательности дискретных значений s(kt), k = 0,1,2,... , и однозначно восстановлена по этой последовательности. В этом и состоит сущность теоремы отсчетов Котельникова. В зарубежной литературе она называется также теоремой Шеннона или теоремой дискретизации (sampling teorem).

  1   2   3




Похожие:

Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconКонструирование радиоэлектронной геофизической аппаратуры
Все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет – плохи
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconОт опытности надежда
Если наши физические силы покидают нас нравственные умножаются. И самые наши скорби неужели бесполезны для нас? Нет! Ими мы более...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconВейвлетные преобразования сигналов тема Вейвлетный кратномасштабный анализ
Кто-то ради насмешки спросил философа: "Если я сожгу тысячу мин дерева, сколько получится мин дыма?". "Взвесь, сказал Демонакт, золу,...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconПортфолио учащегося Что такое портфолио
Таким образом, акцент смещается с того, что учащийся не знает и не умеет, на то, что он знает и умеет по данной теме, данному предмету,...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconКто умеет любить?

Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconТема спектральное представление сигналов я согласен, что все состоит из атомов. Но какое нам до этого дело? Ведь мы занимаемся вопросом о природе богов!
Природа экономна. Если и богов она стряпает из атомов, то каждым сигналом в отдельности тем более заниматься не будет. А значит,...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconРешение: Число 101
Малыш, а вторым Карлсон – они берут из мешка от 1 до 10 конфет. Когда все конфеты разобрали, игроки подсчитывают взятое количество...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconПриходилось ли тебе наблюдать, как люди с природными способностями к счёту бывают восприимчивы, можно сказать, ко всем наукам
Даже все те, кто туго соображает, если они обучаются этому и упражняются, то хотя бы они не извлекали из этого для себя никакой пользы,...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconТема введение в цифровую обработку сигналов в серьезных делах следует заботиться не столько о том, чтобы создавать благоприятные возможности, сколько о том, чтобы их не упускать
Для цифровой обработки сигналов нужно сначала определить, для тебя это дело или возможность. Если дело – вперед и с песней, будешь...
Тема дискретизация сигналов все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет плохи iconТема 13. Деконволюция цифровых сигналов если дом красив, то мы понимаем, что он был выстроен для хозяев, а не для мышей
Деконволюция сходна с археологией. Задача – восстановить дом из развалин. Обнадеживает, если обломки на месте. Но если только песок,...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов