Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами icon

Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами



НазваниеТема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами
страница1/2
Дата конвертации22.07.2012
Размер456.47 Kb.
ТипРеферат
  1   2


ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Digital signals processing

Тема 11. АДАПТИВНАЯ ФИЛЬТРАЦИЯ ЦИФРОВЫХ ДАННЫХ

Пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами.

Гораций. Послания. Римский поэт, I в.д.н.э.

Если в этой теории Вы не увидите смысла, тем лучше. Можно пропустить объяснения и сразу приступить к ее практическому использованию.

Валентин Ровинский. Теория карточных игр.

Киевский геофизик Уральской школы, ХХ в.


Содержание

Введение.

1. Общие сведения об адаптивной цифровой фильтрации. Основные области применения. Адаптивный шумоподавитель. Адаптивный фильтр Винера. Адаптивный алгоритм наименьших квадратов Уидроу-Хопфа. Рекурсивные схемы наименьших квадратов.

2. Основы статистической группировки информации. Предпосылки метода. Задача статистической группировки. Использование априорных данных. Эффективность метода.

3. Статистическая регуляризация данных. Проверка теоретических положений метода. Оценка сохранения разрешающей способности. Статистическая оценка регуляризации данных. Результаты моделирования. Частотное представление. Пример практического использования.

4. Статистическая группировка полезной информации. Сущность аппаратной реализации. Особенности аппаратной реализации. Реализация систем группировки информации. Пример исполнения системы группировки информации.

Введение

В традиционных методах обработки данных информация извлекается из входных сигналов линейными системами с постоянными параметрами алгоритмов преобразования данных. Системы могут иметь как конечную, так и бесконечную импульсную характеристику, но передаточная функция систем не зависит от параметров входных сигналов и их изменения во времени.

Адаптивные устройства обработки данных отличаются наличием определенной связи параметров передаточной функции с параметрами входных, выходных, ожидаемых, прогнозируемых и прочих дополнительных сигналов или с параметрами их статистических соотношений, что позволяет самонастраиваться на оптимальную обработку сигналов. В простейшем случае, адаптивное устройство содержит программируемый фильтр обработки данных и блок (алгоритм) адаптации, который на основании определенной программы анализа входных, выходных и прочих дополнительных данных вырабатывает сигнал управления параметрами программируемого фильтра. Импульсная характеристика адаптивных систем также может иметь как конечный, так и бесконечный характер.

Как правило, адаптивные устройства выполняются узкоцелевого функционального назначения под определенные типы сигналов.
Внутренняя структура адаптивных систем и алгоритм адаптации практически полностью регламентируются функциональным назначением и определенным минимальным объемом исходной априорной информации о характере входных данных и их статистических и информационных параметрах. Это порождает многообразие подходов при разработке систем, существенно затрудняет их классификацию и разработку общих теоретических положений /л38/. Но можно отметить, что наибольшее применение при разработке систем для адаптивной обработки сигналов находят два подхода: на основе схемы наименьших квадратов (СНК) и рекурсивной схемы наименьших квадратов (РСНК).

^ 11.1. ОБЩИЕ СВЕДЕНИЯ ОБ АДАПТИВНОЙ ЦИФРОВОЙ ФИЛЬТРАЦИИ [38, 43].

Основные области применения адаптивной фильтрации – очистка данных от нестабильных мешающих сигналов и шумов, перекрывающихся по спектру со спектром полезных сигналов, или когда полоса мешающих частот неизвестна, переменна и не может быть задана априорно для расчета параметрических фильтров. Так, например, в цифровой связи сильная активная помеха может интерферировать с полезным сигналом, а при передаче цифровой информации по каналам с плохими частотными характеристиками может наблюдаться межсимвольная интерференция цифровых кодов. Эффективное решение этих проблем возможно только адаптивными фильтрами.

Частотная характеристика адаптивных фильтров автоматически регулируется или модифицируется в соответствии с определенным критерием, позволяющем фильтру адаптироваться к изменениям характеристик входного сигнала. Они достаточно широко используются в радио- и гидролокации, в системах навигации, в выделении биомедицинских сигналов, и многих других отраслях техники. В качестве примера рассмотрим наиболее распространенные схемы адаптивной фильтрации сигналов.

Адаптивный шумоподавитель. Блок-схема фильтра приведена на рис. 11.1.1.




Рис. 11.1.1.
Фильтр состоит из блока цифрового фильтра с регулируемыми коэффициентами и адаптивного алгоритма для настройки и изменения коэффициентов фильтра. На фильтр одновременно подаются входные сигналы y(k) и x(k). Сигнал y(k) содержит полезный сигнал s(k) и некоррелированный с ним загрязняющий сигнал g(k). Сигнал x(k) какого-либо источника шума, коррелированный с g(k), который используется для формирования оценки сигнала ğ(k). Полезный сигнал оценивается по разности:

š(k) = y(k) – ğ(k) = s(k) + g(k) – ğ(k). (11.1.1)

Возводим уравнение в квадрат и получаем:

š2(k) = s2(k) + (g(k) – ğ(k))2 + 2.s(k) (g(k) – ğ(k)). (11.1.2)

Вычислим математическое ожидание левой и правой части этого уравнения:

M[š2(k)] = M[s2(k)] + M[(g(k) – ğ(k))2] + 2M[s(k) (g(k) – ğ(k))]. (11.1.3)

Последнее слагаемое в выражении равно нулю, поскольку сигнал s(k) не коррелирует с сигналами g(k) и ğ(k).

M[š2(k)] = M[s2(k)] + M[(g(k) – ğ(k))2]. (11.1.4)

В этом выражении M[s2(k)] = W(s(k)) – мощность сигнала s(k), M[š2(k)] = W(š(k)) – оценка мощности сигнала s(k) и общая выходная мощность, M[(g(k) – ğ(k))2] = W(g) - остаточная мощность шума, который может содержаться в выходном сигнале. При настройке адаптивного фильтра к оптимальному положению минимизируется мощность остаточного шума, а, следовательно, и мощность выходного сигнала:

min W(š(k)) = W(s(k)) + min W(g). (11.1.5)

На мощность полезного сигнала настройка не влияет, поскольку сигнал не коррелирован с шумом. Эффект минимизации общей выходной мощности будет выражаться в максимизации выходного отношения сигнал/шум. Если настройка фильтра обеспечивает равенство ğ(k) = g(k), то при этом š(k) = s(k). Если сигнал не содержит шума, адаптивный алгоритм должен устанавливать нулевые значения всем коэффициентам цифрового фильтра.




Рис. 11.1.2.
Адаптивный фильтр Винера. Входной сигнал y(k) фильтра, приведенного на рис. 11.1.2, включает компоненту, коррелированную с со вторым сигналом x(k), и полезную компоненту, некоррелированную с x(k). Фильтр формирует из x(t) сигнал ğ(k) - оптимальную оценку той части у(k), которая коррелированна с x(k), и вычитает ее из сигнала y(k). Выходной сигнал:

e(k) = y(k) - ğ(k) = y(k) - HT Xk = y(k) -h(n) x(k-n),

где HT и Xk векторы весовых коэффициентов фильтра и его входного сигнала.

Аналогично предыдущему методу, возводим в квадрат левую и правую части уравнения, находим математические ожидания обеих частей и получаем уравнение оптимизации  выходного сигнала:

 2PTH + HTRH, (11.1.6)

где 2 = M[y2(k)] – дисперсия y(k), P = M[y(k)Xk] – вектор взаимной корреляции, R = M[XkXkT] – автокорреляционная матрица.




Рис. 11.1.3.
В стационарной среде график зависимости  от коэффициентов H представляет собой чашеобразную поверхность адаптации (рис. 11.1.3). Градиент поверхности:

d / dH = -2P + 2RH.

Каждому набору коэффициентов h(n) на этой поверхности соответствует определенная точка. В точке минимума градиент равен нулю и вектор весовых коэффициентов фильтра является оптимальным:

Hopt = R-1P. (11.1.7)

Эта формула называется уравнением Винера-Хопфа. Задачей алгоритма автоматической настройки является подбор таких весовых коэффициентов фильтра, которые обеспечивают работу в оптимальной точке поверхности адаптации.

Однако практическое применение фильтра затрудняется использованием корреляционных матриц R и P, априори неизвестных, и которые могут изменяться со временем для нестационарных сигналов.

Адаптивный алгоритм наименьших квадратов Уидроу-Хопфа. По существу, это модификация фильтра Винера, в которой вместо вычисления коэффициентов (11.1.7) за один шаг используется алгоритм последовательного спуска в оптимальную точку при обработке каждой выборки:

Hk+1 = Hk - ek Xk, (11.1.8)

ek = yk - HT Xk. (11.1.9)

Условие сходимости к оптимуму:

0 <  > 1/max, (11.1.10)

где  - параметр скорости спуска, max – максимальное собственное значение ковариационной матрицы данных. Блок-схема алгоритма приведена на рис. 11.1.4.



Рис. 11.1.4. Алгоритм адаптации методом наименьших квадратов.

На практике точка максимальной оптимальности флюктуирует около теоретически возможной. Если входной сигнал нестационарный, то изменение статистик сигнала должно происходить достаточно медленно, чтобы коэффициенты фильтра успевали следить за этими изменениями.

Рекурсивные схемы наименьших квадратов отличаются тем, что вычисление каждой последующей выборки коэффициентов h(n) производится не только по коэффициентам только одной предыдущей выборки, но и с определенной длиной постепенно затухающей памяти по предшествующим выборкам, что позволяет снижать флюктуации оценок при обработке стационарных сигналов.

^ 11.2. Основы статистической группировки информации.

При построении систем адаптивной фильтрации данных большое значение имеют статистические характеристики обрабатываемых сигналов и шумов, их стационарность, и наличие какой-либо дополнительной информации, коррелированной с основной. Возможность использования дополнительной информации при построении адаптивных систем рассмотрим на конкретном примере – системе адаптивной фильтрации данных непрерывных ядерногеофизических измерений.

Предпосылки метода. Физической величиной, регистрируемой в процессе ядерно-физических измерений в геофизике, обычно является частота импульсных сигналов на выходе детекторов ионизирующего излучения в интегральном или дифференциальном режиме амплитудной селекции. Значения измеряемой величины, как статистически распределенной по своей природе, могут быть определены только путем усреднения числа актов регистрации ионизирующих частиц по интервалам времени. Зарегистрированное количество импульсов определяет статистическую погрешность единичного измерения, а временной интервал усреднения, обеспечивающий нормативную погрешность – их производительность. Для методов с непрерывной регистрацией информации во времени (или в пространстве) временное окно измерений определяет также временную (или пространственную, с учетом скорости перемещения детектора) разрешающую способность интерпретации результатов измерений, при этом эффективность регистрации информации обычно ограничена условиями измерений и/или техническими средствами их исполнения. Типичный пример - каротаж скважин, где возможности увеличения интенсивности потоков информации ограничены параметрами эффективности регистрации и чувствительности детекторов излучения, которые зависят от их типа и размеров. Размеры детекторов, естественно, существенно зависят от размеров скважинных приборов, которые, в свою очередь, ограничены диаметрами скважин.

Ниже рассматривается возможность повышения точности и производительности непрерывных ядерно-физических измерений, для наглядности, применительно к условиям измерений в варианте скважинного гамма-опробования, хотя в такой же мере она может быть использована в авто- и аэрогаммасъемке, при радиометрическом обогащении руд, в рентгенорадиометрии и других методах ядерной геофизики. Предполагается, что регистрация данных производится в цифровой форме с накоплением отсчета по постоянным интервалам дискретизации данных (по времени и по пространству, при условии постоянной скорости перемещения детектора).

В общем случае полезная (целевая) информация может присутствовать в нескольких энергетических интервалах спектра излучения. Рабочими интервалами измерений обычно счи­таются участки спектра, где полезная информация присутствует в "чистом" виде либо в смеси с помехами (фоном), значение которых может быть учтено при обработке результатов изме­рений. Так, например, при гамма-опробовании пород на содержание естественных радионук­лидов (ЕРН) регистрируется излучение с энергией более 250-300 кэВ, представленное в основном первичными и однократно рассеянными квантами, плотность потока которых про­порциональна массовой доле ЕРН в породах. Плотность потока излучения в низкоэнергети­ческом интервале спектра (20-250 кэВ, в основном многократно рассеянное излучение) также зависит от массовой доли ЕРН, но эта зависимость является параметрически связанной с эф­фективным атомным номером излучающе-поглощающей среды в области детектора, вариации которого по стволу скважины могут приводить к большой погрешности интерпретации ре­зультатов измерений. Между тем плотность потока информации (относительно массовой доли ЕРН) в интервале 20-250 кэВ много выше, чем в интервале более 250 кэВ, осо­бенно при регистрации излучения сцинтилляционными детекторами малых объемов, которые имеют повышенную чувствительность именно к низкоэнергетической части спектра излуче­ния.

Задача статистической группировки информации в потоках сигналов в общей и наибо­лее простой форме может быть сформулирована следующим образом. Полезная информация присутствует в двух статистически независимых потоках сигналов (в двух неперекрывающихся интервалах спектра излучения). В первом потоке сигналов, условно- основном, полезная информация присутствует в "чистом" виде: плотность потока сигналов пропорциональна опреде­ляемой физической величине. Во втором потоке, условно-дополнительном, на полезную ин­формацию наложено влияние дестабилизирующих факторов, значение которых неизвестно. При отсутствии дестабилизирующих факторов коэффициент корреляции средних значений плотностей потоков в этих двух потоках сигналов постоянен и близок к 1. Для снижения ста­тистической погрешности измерений требуется осуществить извлечение полезной информа­ции из дополнительного потока сигналов и ее суммирование с основным потоком.

Обозначим потоки, а равно и частоты основного и дополнительного потоков сигналов индексами n и m (импульсов в секунду), связь потоков по частотам индексом х = m/n. Определению подлежит частота потока n. Значение х может изменяться за счет влияния дестабилизирующих факторов на поток m и в общем случае представляет собой случайную величину, распределенную по определенному закону с плотностью вероятностей Р(х), мате­матическим ожиданием , и дисперсией Dx.

На основе теоремы Байеса, плотность вероятностей распределения частоты n по измеренному за единичный интервал t числу отсчетов сигнала N определяется выражением:

PN(n) = P(n) Pn(N) P(N), (11.2.1)

Pn(N) = (nТ)N e-n N! , (11.2.2)

P(N) =Pn(N) P(n) dn, (11.2.3)

где: P(n) - априорная плотность вероятностей частоты n, Pn(N) - апостериорное распределе­ние вероятностей числовых отсчетов N (закон Пуассона). Принимая в дальнейшем в качестве искомой величины значения отсчетов z=n по интервалам  (экспозиция цифровых отсчетов или скользящее временное окно аналоговых данных) и подставляя (11.2.2, 11.2.3) в (11.2.1), получаем:

PN(z) = P(z) zN e-zP(z) zN e-z dz. (11.2.4)

При неизвестном распределении значений z априорная плотность распределения P(z) принимается равномерной от 0 до , при этом из выражения (11.2.4) следуют общеизвестные выражения:

z = Dz = N+1  N, (11.2.5)

z2 = Dz z2 = 1 (N+1)  1N. (11.2.6)

Значениями единиц в выражениях пренебрегаем, что не только корректно в условиях "хорошей" статистики, но и необходимо в режиме последовательных непрерывных измерений для исключения смещения средних значений.

Как следует из теории гамма-каротажа (ГК) и достаточно хорошо подтверждено практикой гамма-опробования, пространственная разрешающая способность гамма-каротажных измерений при интерпретации результатов ГК на содержание естественных радиоактивных элементов в породах по стволу скважин в среднем составляет 10 см, а в скважинах малого диаметра может даже повышаться до 5-7 см. Однако реализация такой разрешающей способности возможна только в условиях достаточно "хорошей" статистики. Коэффициент усиления дисперсии помех цифровых фильтров деконволюции, которые используются при интерпретации ГК, в среднем порядка 12 и изменяется от 4 до 25 в зависимости от плотности пород, диаметра скважин, диаметра скважинных приборов и пр. Отсюда следует, что для достижения разрешающей способности в 10 см при нормативной погрешности дифференциальной интерпретации не более 10-20 % статистическая погрешность измерений не должна превышать 3-7 %. А это, в свою очередь, определяет объем отсчета за единичную экспозицию не менее 200-1000 импульсов. При гамма-каротаже последнее возможно только для пород с относительно высоким содержанием ЕРН (более 0.001 % эквивалентного урана), при использовании детекторов больших размеров (с эффективностью регистрации более 10 имп/сек на 1 мкР/час) и при низкой скорости каротажа (не более 100-300 м/час). В той или иной мере эта проблема характерна для всех методов ядерной геофизики, и особенно остро стоить в спектрометрических модификациях измерений.

Вместе с тем следует отметить, что процесс непрерывных измерений имеет определенную физическую базу как для применения методов регуляризации результатов интерпретации данных, так и для регуляризации непосредственно самих статистических данных (массивов отсчетов N) при их обработке.

Простейшим способом подготовки цифровых данных для интерпретации является их низкочастотная фильтрация методом наименьших квадратов (МНК) или весовыми функциями (Лапласа-Гаусса, Кайзера-Бесселя и др.). Однако любые методы низкочастотной фильтрации данных снижают пространственную разрешающую способность интерпретации, так как кроме снижения статистических флюктуаций приводят к определенной деформации частотных составляющих полезной части сигнала, спектр которого по условиям деконволюции должен иметь вещественные значения вплоть до частоты Найквиста. В определенной мере ликвидировать этот негативный фактор позволяет метод адаптивной регуляризации данных (АРД).

Выражения (11.2.5-6) получены в предположении полной неизвестности априорного распределения P(z) для отсчетов в каждой текущей экспозиции . Между тем, при обработке данных непрерывных измерений, и тем более каротажных данных, которые обычно являются многопараметровыми, для каждого текущего отсчета при обработке данных может проводиться определенная оценка распределения P(z). Как минимум, можно выделить два способа оценки распределения P(z).

Способ 1. По массивам данных параллельных измерений каких-либо других информационных параметров, значения которых достаточно четко коррелированны с обрабатываемым массивом данных либо в целом по пространству измерений, либо в определенном скользящем интервале сравнения данных. К таким массивам относятся, например, предварительные каротажные измерения в процессе бурения скважин, измерения другим прибором, с другой скоростью каротажа, в другом спектральном интервале излучения, и даже другим методом каротажа. При гамма-опробовании оценка распределения P(z) может производиться по параллельным измерениям интенсивности потока m в низкочастотном интервале спектра горных пород.

Способ 2. При единичной диаграмме ГК оценка распределения P(z) в каждой текущей точке обработки данных может выполняться по ближайшим окрестностям данной точки, захватывающим более широкий пространственный интервал по сравнению с интервалом отсчетов.

Использование априорных данных. Допустим, что кроме основного массива данных N, подлежащего обработке (подготовке к интерпретации), мы располагаем дополнительным массивом данных M, значения которого в определенной степени коррелированы с массивом N. При отсутствии дополнительных массивов способ 2 позволяет получить массив М обработкой массива N цифровым фильтром МНК (или любым другим весовым фильтром) со скользящим временным окном T  3 (M(k) = m(k) сглаженного сигнала m(k) = n(k) ③ h, где h – оператор симметричного цифрового фильтра). Отметим также, что 2-ой способ всегда может использоваться для регуляризации данных независимо от наличия данных для 1-го метода.

Массив М позволяют дать оценку статистических характеристик распределения P(z). Так, если для тех же интервалов времени  в массиве М имеются отсчеты М = mk (или приведенные к ним отсчеты какого-либо другого параметра), то можно записать:

PM(z) =, (11.2.7)

где Р(х) – априорная плотность распределения значений xk = mk/nk, которые в общем случае также могут быть случайными. При равномерном распределении Р(х) от 0 до  для отсчета М равновероятно любое значение z, т.е. эффект от измерений в потоке m отсутствует. Однако по исходным условиям задачи в потоке m обязательно присутствие полезной информации, а, следовательно, и суще­ствование, как минимум, определенных границ распределения Р(х) от хmin > 0 до xmax << , и среднего значения по пространству измерений. При этом из выражения (11.2.7) следует, что наиболее вероятное значение za, "априорное" для отсчетов z=n в потоке n по измерениям в потоке m (отсчетам М), должно быть равно:

za = (M+1)  М. (11.2.8)

При статистической независимости величин х и М относительная средняя квадратическая погрешность определения значений za по отсчетам в массиве М:

za2 = M2 + x2. (11.2.9)

Отсюда дисперсия распределения значений za:

Dza = (DM+M2x2)2 = D(M) 2, (11.2.10)

D(M) = DM+M2x2 = DM+Dxm , (11.2.11)

DM = М+1  М, Dxm = M2x2,

где значение дисперсии DM определяется статистикой отсчетов в массиве М при х = const, значение Dxm представляет собой дисперсию значений М за счет флюктуаций величины х, а сумма D(M) определяет полную дисперсию отсчетов М.

Влияние Р(х) на форму распределения РМ(z) сказывается в его "растягивании" по координате z относительно модального значения, при этом решение интеграла (11.2.7) в первом приближении может быть представлено в следующем виде:

PM(z)  be-bz. (11.2.12)

Для данного распределения:

= za = ab, (11.2.13)

Dza = ab2, (11.2.14)

С учетом выражений (11.2.8) и (11.2.10):

a = MDM(Dza2) = MDMD(M), (11.2.15)

b = DM(Dza) = DМD(M). (11.2.16)

Значение 'а' в выражении (11.2.15) принимается целочисленным. Выражение (11.2.12) может быть принято для распределения (11.2.4) в качестве априорного распределения вероятностей Р(z), при этом:

PN(z) = (b+1) e-z(b+1). (11.2.17)

Отсюда, математическое ожидание и дисперсия z:

z = (N+a)(b+1), (11.2.18)

Dz = (N+a)(b+1)2. (11.2.19)

C использованием выражений (11.2.15-16):

z = N+(1-)M, (11.2.20)

где  и (1-) – весовые коэффициенты доверия отсчетам N и M:

 = D(M)(DN2+D(M)). (11.2.21)

Дисперсия и относительная средняя квадратическая погрешность отсчетов z:

Dz = D(M), (11.2.22)

z2 =1(N+MDMD(M)). (11.2.23)

  1   2




Похожие:

Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconАдаптивная фильтрация данных непрерывных ядернофизических измерений
...
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconСказка о Камнесказе
И были эти коты необычные. Жили они не с людьми, а сами по себе. Они помогали друг другу в беде, кормили не только себя, но и всех...
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconСедьмая (new!)
На следующий день, Наталия и Глюкоза отправились на передачу "Пусть Говорят" где они должны были представить зрителям новую композицию....
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconХристос здесь, но это еще
И чем больше будешь, кстати, играть головой, тем больше шансов подчинить себе ситуацию. (Оживляясь). Сам подумай: мы могли бы грохнуть...
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconТема: Поиск информации в базе данных
На предыдущих уроках мы познакомились с базами данных. Знаем типы баз данных, отрасли их использования
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconИванова Н. В., учитель информатики и икт моу сш №1 Урок информатики. 10 класс. Тема: «Базы данных. Назначение баз данных»
Сформировать представления о понятиях: «база данных (БД)», «система управления базами данных», раскрыть и показать их назначение
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconТема : Поиск и сортировка информации в базах данных
В фрагменте базы данных представлены сведения о родственных отношениях. Определите на основании приведенных данных фамилию и инициалы...
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconТема : Поиск и сортировка информации в базах данных
В фрагменте базы данных представлены сведения о родственных отношениях. Определите на основании приведенных данных фамилию и инициалы...
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconОбзор скоростных цифровых изоляторов с передачей данных через магнитное поле Дмитрий Иоффе, dsioffe@yandex ru Статья для журнала «Компоненты и технологии»
В настоящее время они выпускаются тремя фирмами: nve, Avago Technologies и Analog Devices. В статье, предназначенной для разработчиков...
Тема 11. Адаптивная фильтрация цифровых данных пусть они постараются подчинить себе обстоятельства, а не подчиняются им сами iconРабочая правда
Эти люди оглохли и ослепли от наживы. Они не понимают предупреждений, смеются над жалобами людей. Они понимают только одно – силу....
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов