Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин icon

Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин



НазваниеПреобразование гильберта-хуанга для обнаружения повреждений в строениях пластин
Дата конвертации26.08.2012
Размер89.74 Kb.
ТипДокументы


ПРЕОБРАЗОВАНИЕ ГИЛЬБЕРТА-ХУАНГА

ДЛЯ ОБНАРУЖЕНИЯ ПОВРЕЖДЕНИЙ В СТРОЕНИЯХ ПЛАСТИН

Выборки и машинный перевод.

Преобразование Гильберта-Хуанга: http://prodav.narod.ru/hht


Bibliography


[1] Zumpano, G., Viscardi, M., and Lecce, L., ”Structural Damage Analysis on a Typical Aeronautical Structure Using Piezoelectric devices”, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, Washington, April 2001


[2] Staszewski, W., “Advanced data pre-processing for damage identification based on pattern recognition”, International Journal of Systems Science, Vol. 31, No. 11, 2000, pp. 1381-1396.


[3] Speckmann, H. and Daniel, J.P., “Structural Health Monitoring for Airliner, from research to user requirements, a European view”, Conference on Micro-Nano- Technologies, Monterey, California, November 2004.


[4] Speckmann, H. and Henrich, R., “Structural Health Monitoring (SHM) – Overview on Technologies under Development”, World Conference on NDT, Montreal, Canada, September 2004.


[5] Steinke, S. and Grunder, M., “Airbus A380 construction advances”, Flug Revue , November 2003, available online at http://www.flug-revue.rotor.com/FRheft/FRH0311/FR0311b.htm


[6] Staszewski, W., Boller, C., and Tomlinson, G., Health Monitoring of Aerospace Structures, John Wiley & Sons, 2004.


[7] Worden, K., Staszewski, W., and Tomlinson, G., “Smart systems – the role of signal processing”, Proceedings of CEAS, International Forum on Aeroelasticity and Structural Dynamics, Rome, Italy, July 1997.


[8] Fourier, J., Theorie Analytique de la Chaleur, 1822.


[9] Melhem, H. and Kim, H., “Damage Detection in Concrete by Fourier and Wavelet Analyses”, Journal of Engineering Mechanics, May 2003, pp. 571-577.


[10] Nag, A., Roy, D., and Gopalakrishnan, S., “Identification of Delamination in a Composite Beam Using a Damaged Spectral Element”, Structural Health Monitoring, 2002, Vol. 1, pp. 105-126.


[11] Lee, B.C., and Staszewski, W., “Modelling of Lamb waves for damage detection in metallic structures Part II. Wave interactions with damage”, Smart Materials and Structures 12, 2003, pp. 815-824.


[12] Loewke, K., Meyer, D., Starr, A., and Nemat-Nasser, S.
, “Structural Health Monitoring of Composite Materials Using the Two Dimensional Fast Fourier transform”, submitted to: ^ Smart Materials and Structures


[13] Alleyne, D. N. and Cawley, P., “The measurement and prediction of lamb wave interaction with defects”, Ultrasonics Symposium, pp. 855–857, 1991.


[14] Debnath, L., Wavelet Transforms and Their Applications, Birkhauser, 2002


[15] Ihn, J., and Chang, F., “Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics”, Smart Materials and Structures 13, 2004, pp. 609-620.


[16] Valle, C., and Littles, J., “Flaw localization using the reassigned spectrogram on laser-generated and detected Lamb modes”, Ultrasonics 39, 2002, pp. 535-542.


[17] Kim, I., Lee, H., and Kim, J., “Impact Damage Detection in Composite Laminates Using PVDF and PZT Sensor Signals”, Journal of Intelligent Material Systems and Structures, Vol. 16, November/December 2005.


[18] Wait, J., Park, G., Sohn, H., and Farrar, C., “An Integrated Active Sensing System for Damage Identification and Prognosis”, Structural Dynamics and Materials Conference, Palm Springs, California, April 2004.


[19] Paget, C., Grondel, S., Levin, K., and Delebarre, C., “Damage assessment in composites by Lamb waves and wavelet coefficients”, Smart Materials and Structures 12, 2003, pp. 393-402.


[20] Kessler, S., Spearing, S., and Soutis, C., “Damage detection in composite materials using Lamb wave methods”, Smart Materials and Structures 11, 2002, pp. 269-278.


[21 Kim, H., and Melhem, H., “Damage detection of structures by wavelet analysis”, Engineering Structures 26, 2004, pp. 347-362.


[22] Lemistre, M., Gouyon, R., Kaczmarek, H. and Balageas, D., “Damage Localization in Composite Plates Using Wavelet Transform Processing on Lamb Wave Signals”, 2nd International Workshop on Structural Health Monitoring, Stanford, California, September 1999.


[23] Ip, K., and Mai, Y., “Delamination detection in smart composite beams using Lamb waves”, ^ Smart Materials and Structures 13, 2004, pp. 544-551


[24] Salehian, A., Hou, Z., and Yuan, F.G., “Identification of location of a sudden damage in plates using wavelet approach”, 16th ASCE Engineering Mechanics Conference, Seattle, Washington, July 2003.


[25] M. Z. Silva, R. Gouyon, and F. Lepoutre, “Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis,” Ultrasonics 41, pp. 301–305, 2003.


[26] Quek, S., Wang, Q., Zhang, L., and Ong, K.H., “Practical issues in the detection of damage in beams using wavelets”, Smart Materials and Structures 10, 2001, pp. 1009-1017.


[27] Okafor, A., and Dutta, A., “Structural damage detection in beams by wavelet transforms”, Smart Materials and Structures 9, 2000, pp. 906-917.


[28] Sohn, H., Farrar, C., Hemez, F., Shunk, D., Stinemates, D., and Nadler, B., “A Review of Structural Health Monitoring Literature: 1996-2001”, Los Alamos National Laboratory Report, 2003


[29] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, ^ Proceedings of R. Soc. Lond. A 454, pp. 903–995, 1998.


[30] Lin, S., Yang, J., and Zhou, L., “Damage identification of a benchmark building for structural health monitoring”, Smart Materials and Structures 14, 2005, pp. 162-169.


[31] Quek, S., Tua, P., and Wang, Q., “Detecting anomalies in beams and plate based on the Hilbert–Huang transform of real signals”, Smart Materials and Structures 12, 2003, pp. 447-460.


[32] Tua, P., Quek, S., and Wang, Q., “Detection of cracks in plates using piezo- actuated Lamb waves”, Smart Materials and Structures 13, 2004, pp. 643-660.


[33] Yang, L., Lei, Y., Lin, S., and Huang, N., “Hilbert-Huang Based Approach for Structural Damage detection”, Journal of Engineering Mechanics, No. 1, January2004.


[34] L. W. Salvino and D. J. Pines, “Structural damage detection using empirical mode decomposition and HHT”, Journal of Sound and Vibration 294, January 2006, pp. 97-124.


[35] Jha, R., Xu, S., and Ahmadi, G., “Health Monitoring of a Multi-Level Structure Based on Empirical Mode Decomposition and Hilbert Spectral Analysis”, ^ Fifth International Workshop on Structural Health Monitoring (Editor: Fu-Kuo Chang), September 12–14, 2005, Stanford University, CA


[36] Bernal, D., and Gunes, B., “An Examination of Instantaneous Frequency as aDamage Detection Tool”, 14th Engineering Mechanics Conference, Austin, Texas.


[37] Yu, D., Cheng, J., and Yang, Y., “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings”, ^ Mechanical Systems and Signal Processing 19, 2005, pp. 259-270.


[38] Quek, S., Tua, P., and Wang, Q., “Comparison of Hilbert-Huang, wavelet and Fourier transforms for selected applications”, Mini-Symp. On Hilbert-Huang Transform in Engineering Applications, Newark, November, 2003.


[39] Purekar, A.S., Piezoelectric phased array acousto-ultrasonic interrogation of damage in thin plates. PhD thesis, University of Maryland, Department of Aerospace Engineering, 2006.


[40] Purekar, A.S., Pines, D.J., Sundararaman, S., and Adams, D.E, “Directionnal piezoelectric phased array filters for detecting damage in isotropic plates”, Smart Materials and Structures 13, 2004, pp. 838-850.


[41] Ville, J., “Theorie et applications de la notion de signal analytique”, Cables et Transmissions, vol. 2A, 1948, pp. 61-74.


[42] Abbate, A., DeCusatis, C. M., and Das, P. K., Wavelets and Subbands Fundamentals and Applications, Birkhauser, 2002


[43] Matlab Help


[44] Bendat, J., and Piersol, A., Random Data, Wiley Series in Probability and Statistics, 2000.


[45] Cohen, L., “Time-frequency distributions - A Review”, Proceedings of the IEEE, vol. 77, no. 7, pp. 941-981, 1989.


[46] Boashash, B., “Estimating and interpreting the instantaneous frequency of a signal - Part 1: Fundamentals”, ^ Proceedings of the IEEE, vol. 80, no. 4, pp. 520-537, 1992


[47] Cohen, L., Time-frequency analysis, Englewood Cliffs, NJ: Prentice-Hall.


[48] Gabor, D., “Theory of communication”, Proceedings of the IEEE, vol. 93, pp. 429-457, 1946


[49] Rilling, G., Flandrin, P., and Goncalves,P., “On Empirical Mode Decompoistion and its Algorithms”.


[50] Blakely, C. D., “A Fast Empirical Mode Decomposition Technique For Nonstationary Nonlinear Time Series”, Preprint submitted to Elsevier Science, October, 2005


[51] Rytter, A., ^ Vibration based inspection of civil engineering structure, Ph.D. dissertation, Department of Building Technology and Structural Engineering, 1993, Aalborg University, Denmark.


[52] Jha, R., Cross, K., Janoyan, K., Sazonov, E., Fuchs, M., and Krishnamurthy, V., “Experimental evaluation of instantaneous phase based index for structural health monitoring”, Proceedings of SPIE 6173, Smart Structures and Integrated Systems, April, 2006.


[53] Graff, K. F., Wave Motion In Elastic Solids, Dover Publications, Inc., New York, 1975.


[54] Website http://www.glenbrook.k12.il.us/gbssci/phys/CLass/waves/u10l2c.html


[55] Alleyne, D. N., and Cawley, P., “The interaction of Lamb waves with defects”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 1992, pp. 381–97.


[56] Giurgiutiu, V., Bao, J., and Zhao, W., “Piezoelectric wafer active sensor embedded ultrasonics in beams and plates,” Experimental Mechanics 43(4), 2003, pp. 428–449.


[57] Viktorov, I., Rayleigh and Lamb Waves: Physical Theory and Applications, New York: Plenum, 1967.


[58] Achenbach, J.D., Wave Propagation in Elastic Solids, North-Holland, New York, 1984.


[59] Chang, Z., and Mal, A., “Scattering of Lamb waves from a rivet hole with edge cracks” Mech. Mater. 21, 1999, pp. 197–204.


[60] Wang, C. S., and Chang, F.K., “Built-in diagnostics for impact damage identification of composite structures”, Proc. 3rd Int. Workshop on Structural Health Monitoring, Stanford, California, 1999, pp. 612–621.


[61] Jones, R. M., Mechanics of Composite Materials, Hemisphere Publishing Company, New York, 1987.


[62] Hayashi, T., and Kawashima, K., “Multiple reflections of Lamb waves at a delamination”, Ultrasonics 40, 2002, pp. 193-197.


[63] Berlincourt, D., Krueger, H. H. A. , and Near, C.,“Properties of piezoelectricity ceramics,” Tech. Rep. TP-226, Morgan Electro Ceramics.


[64] Measurement Specialities, Inc., Sensor Products Division, 960 Forge Avenue, Norristown, PA 19403, Piezo Film Sensors Technical Manual.






Похожие:

Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconПреобразование гильберта-хуанга для обнаружения повреждений в строениях пластин
Гильберта-Huang, наряду с Лэмбовским распространением волны для тонких пластин. С использованием симметрий волны от разрывов методы...
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconМетрики emd для Обнаружения Повреждения
Эта глава поэтому посвящена исследованию особенностей преобразования Гильберта-Huang, которые могли использоваться, чтобы получить...
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconВведение в преобразование гильберта-хуанга и связанные с ним математические задачи

Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconВнутренние модовые функции
Преобразование Гильберта-Хуанга и эмпирическая модовая декомпозиция сигналов
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconВведение в преобразование Гильберта-Хуанга
Норден E. Хуанг. Исследовательский центр адаптивного анализа данных. Национальный Центральный Университет
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconТема 24. Преобразование гильберта-хуанга судьба новой истины такова: в начале своего существования она всегда кажется ересью
У стадию Хуанг уже прошел. Вытирать об него ноги математики прекратили и скопом ринулись обосновывать новый метод. А практикам понравилось:...
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconЧастотно-временные методы обнаружения повреждений
Фурье-преобразование ограничено стационарными сигналами, имеющими фиксированное частотное информационное наполнение. Напротив, неустановившиеся...
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconЧастично редактированный машинный перевод
Обработка на базе bpnn для ликвидации концевых эффектов преобразования Гильберта-Хуанга
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconВ. А., Давыдов А. В. Краткое введение в преобразование Гильберта-Хуанга Введение
Функции базиса получаются адаптивно непосредственно из данных процедурами отсеивания функций «эмпирических мод». Мгновенные частоты...
Преобразование гильберта-хуанга для обнаружения повреждений в строениях пластин iconB-сплайн база эмпирического метода декомпозиции сигналов машинный перевод
Математические результаты на emd включают Эйлеровы сплайны, как встроенные функции режима, преобразование Гильберта b-сплайнов, и...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов