3. Электричество и магнетизм icon

3. Электричество и магнетизм



Название3. Электричество и магнетизм
страница3/3
Дата конвертации28.08.2012
Размер420.36 Kb.
ТипДокументы
1   2   3
магнитное поле есть пространство, заполненное пуком вращающихся в одном направлении магнитных шнуров.




Однонаправленность вращения шнуров в магнитном пучке — противоестественна и может удерживаться только при определенном внешнем воздействии; такое воздействие могут оказывать атомы и эфирный ветер.

Атомы некоторых химических веществ, например железа, никеля и кобальта, устроены таким образом, что выстраивают прилипшие к ним электроны в магнитные шнуры. Если в момент затвердевания этих веществ их атомы расположены так, что все их магнитные шнуры образуют один магнитный пучок, то полученное твердое тело окажется магнитом. В дальнейшем атомы такого естественного магнита будут удерживать образовавшийся магнитный пучок и противодействовать стремлению отдельных его магнитных шнуров сменить свое направление вращения на обратное. Действие магнитного пучка распространяется и на прилегающие к магниту пространства, то есть за его пределами: находящиеся там свободные электроны будут выстраиваться естественным образом в линии, как бы наращивая магнитные шнуры твердого тела; правда, располагаться плотно друг к другу шнуры в свободном пространстве уже не могут — будут мешать сталкивающиеся оболочки, — и выходящий из твердого тела магнитный пучок будет расходиться веером.

Другим фактором, удерживающим магнитный пучок, является разная скорость эфирного ветра; это явление имеет большое значение в электромагнетизме, и поэтому рассмотрим его более подробно. Представим себе определенный магнитный шнур, расположенный поперек эфирного потока. Если скорость эфира в сечении потока одинакова, то такой ветер может только прогибать или отклонять шнур, но повлиять на направление его вращения не сможет. Другое дело, если скорость эфира в сечении потока окажется разной: с одной стороны шнура больше, а с другой — меньше; такая разность скоростей обдувающего эфира будет либо содействовать вращению магнитного шнура, либо препятствовать ему. При содействии шнур будет чувствовать себя в безопасности, а при сопротивлении — рано или поздно вынужден будет поменять направление своего вращения.

Точно такое же воздействие оказывает эфирный ветер с разными скоростями на магнитный пучек. Если эфирный поток, пронизывающий его, имеет большую скорость с одной стороны, и она убывает по мере смещения к другой, то все магнитные шнуры пучка вынуждены будут вращаться в одном направлении, несмотря на их нежелание это делать. Более того, эфирный ветер с разными скоростями не только ориентирует магнитные шнуры, но и содействует их формированию: электроны, оказавшиеся в поле действия эфирного потока с такими скоростями, будут выстраиваться в соосность с одним направлением вращения, то есть будут объединяться в шнуры.





Проявления магнетизма.

Переменная скорость эфира, плавно изменяющаяся в одном направлении, может возникать в макрозавихрениях, например создаваемых электромагнитными катушками. Скорость закрученного ею эфира будет убывать по мере удаления от витков как к центру катушки, так и на периферию; поэтому с одной стороны от витков будет одно магнитное направление, а с другой стороны — обратное, или, другими словами, внутри катушки сформируется пук магнитных шнуров одного направления вращения, а снаружи, охватывая внутренний кольцом, расположится другой пук с противоположным направлением.

Процесс формирования магнитных пучков микрозавихрением эфира — обратим, то есть постоянный магнит закручивает вокруг себя эфир по отмеченному выше закону: окружная скорость эфира постепенно увеличивается при смещении от центра пучка к его краю (там она — наибольшая), и постепенно уменьшается за пределами пучка при удалении от него. Такое проявление магнетизма, а именно: формирование микрозавихрением эфира магнитного пучка и обратный процесс — закручивание магнитом эфира вокруг себя, — является одним из основных; оно лежит в основе многих электромагнитных процессов.

Другим не менее важным проявлением магнетизма можно считать упругую реакцию магнитного шнура на давление сбоку. Мы знаем, что шнур не прочен, но в пределах до своего разрушения он упруго сопротивляется всякой попытке сместить или прогнуть его. При этом возникает отклоняющее воздействие, вызванное тем, что шнур вращается вокруг своей оси. Если взять проводник и упереться им в магнитный шнур, то, во-первых, потребуется усилие для его прогиба, а во-вторых, электроны проводника , обкатываясь по шнуру, сместятся в сторону его вращения, то есть совершат маленький шажок по проводнику. При его дальнейшем смещении в действие вступит следующий магнитный шнур, и снова все повторится, и электроны проводника снова совершат еще один шажок в прежнем направлении, и так далее. Таким образом в проводнике, пересекающем магнитный пучек, возникает движение электронов, то есть электрический ток. И это проявление магнетизма, а точнее говоря — электромагнетизма, трудно переоценить, ведь именно на этом принципе основана работа всех механических генераторов электрического тока.

Но в глаза обычно бросается иное проявление магнетизма: магнитные притяжения и отталкивания. Если сдвигать соосно два магнитных пучка, да так, чтобы совпадали направления вращения их шнуров, то они устремятся навстречу друг другу и потянут за собой магниты. Это кажется настолько понятным, что не требует особых разъяснений. Совпадающее направление вращение торцевых электронов сближающихся шнуров создает между ними эфирное разряжение, и они будут стремится друг к другу до упора. В свою очередь электроны «привязаны» к атомам и молекулам магнита и тянут их за собой; вот и все. При стыковке магнитов их магнитные шнуры замыкаются, и из двух образуется единый магнит.




Соосное сближение двух магнитных пучков со встречным направлением движения их шнуров порождает совсем иную картину: испытывая лобовые сопротивления, эфирные завихрения торцевых электронов будут уклоняться от взаимного сближения и противодействовать друг другу. В результате магнитные шнуры каждого пучка разойдутся крутым веером, и веера обоих пучков, как веера упругих проволок, будут препятствовать взаимному сближению. Также будут отталкиваться «привязанные» к электронам шнуров атомы и молекулы магнитов.

Кроме отмеченных проявлений магнетизма есть и другие, но они, как правило, являются производными от указанных базовых. Их много, но к ним, как мы уже говорили, не имеют никакого отношения электромагнитные волны, распространяющиеся по эфиру.

Магнитные поля в различных средах.

Идеальной средой для магнитных шнуров является вакуум, то есть чистый эфир. Если он спокоен, то все находящиеся в нем электроны очень быстро выстроятся в магнитные шнуры; только направление вращения соседних шнуров всегда будет паразитным (антипараллельным). Одно направление вращения соседних магнитных шнуров может возникать, как было сказано выше, в эфирном завихрении, и тогда образуется магнитный пучок.

Примером почти чистой эфирной среды для магнитных проявлений может служить безвоздушный космос. На дальних подступах к Земле электроны, летящие от Солнца, имеют возможность выстроится в магнитные шнуры, и подлетая к нашей планете, они уже представляют собой поток параллельно летящих нитей. Назвать такой пучок магнитным нельзя, так как в нем будет неупорядоченное направление вращения всех магнитных шнуров. Вокруг Земли, как мы знаем, действует метазавихрение; оно уже вынуждает соседние магнитные шнуры вращаться в одном направлении, и оно превращает нашу планету в магнит. Опускающиеся к ее полюсам мириады магнитных шнуров, образующие сложные поверхности и отражающие косой свет, выглядят как северное сияние и как красочное природное явление. Возникает оно в тихие дни, когда нет ветра и, стало быть, нет порождающего его эфирного ветра; а когда он есть, то своей турбулентностью он легко разрушает и магнитные потоки, и магнитные шнуры.

Та зона на границе магнитного поля Земли, где происходит переориентация магнитных нитей солнечного ветра в упорядоченные направления вращения, называется магнитопаузой.

Благоприятной средой для магнитных шнуров и пучков являются ферромагнитные материалы, а из них лучшими — магнитно-мягкие, такие как электротехническая малоуглеродистая сталь с присадкой кремния, чистое электротехническое железо, пермаллой и другие. Они хороши по двум соображениям: их атомы, молекулы и кристаллы очень плотно насыщены электронами, и эти электроны почти беспрепятственно могут собираться в магнитные шнуры и также легко распадаться. Препятствия возникают в тех случаях, когда ориентация магнитных шнуров не соответствует ориентации атомов, молекул и кристаллов; такие свойства материалов называются магнитно-анизотропными.

Магнитно-твердые ферромагнетики, а к ним относятся хромовольфрамовые и хромомолибденовые стали, насыщены электронами не меньше, но отличаются от мягких тем, что с трудом перемагничиваются; а это значит, что электроны в них склонны удерживать свое положение и, направление вращения. На примере твердых ферромагнетиков хорошо видна инерционность электронных шнуров, усугубляющаяся нежеланием атомов изменять свои положения.

В сотни и тысячи раз слабее магнитные поля в парамагнитных материалах; к ним относятся воздух, алюминий и другие среды. Нетрудно сообразить, что ориентировать пушистые электроны среди пушистых атомов воздуха не составляет особого труда; слабость магнитных полей объясняется только редким расположением электронов в этих средах. Попутно выясняется, что плотность электронов в воздухе в сотни и тысячи раз меньше, чем в металлах, за исключением алюминия (правда, Дмитрий Иванович Менделеев его к чистым металлам не относил), но про него можно сказать так: внутри атомов алюминия электронов практически нет; мало их и в пространствах между его атомами, но поверхностные присасывающие желоба у него почти ничем не отличаются от желобов других металлов и поэтому хорошо проводят электроны; поэтому-то алюминиевые провода почти не уступают медным.

Хуже всего действуют на магнитные поля диамагнитные материалы, к которым относятся вода, кварц, серебро, медь и другие; они не усиливают внешнее магнитное поле как ферромагнетики и не равнодушны к нему как парамагнетики, а даже ослабляют его. Чем это можно объяснить? Едва ли это вызвано отсутствием электронов; можно даже утверждать, что их там очень много. Причина, вероятнее всего, кроется в том, что атомы диамагнетиков не позволяют своим электронам ни смещаться до соосности, ни поворачивать свои оси вращения.


3.3. Электромагнитные явления

Электромагнитные явления отражают связь электрического тока с магнитным полем. Все их физические законы хорошо известны, и мы не будем стараться поправить их; наша цель иная: объяснить физическую природу этих явлений.

Магнитное поле вокруг проводника с током.

Одно нам уже ясно: ни электричество ни магнетизм не могут быть без электронов; и в этом уже проявляется электромагнетизм. Говорили мы и о том, что катушка с током порождает магнитное поле. Задержимся на последнем явлении и уточним — как оно происходит.

Будем смотреть на катушку с торца, и пусть электрический ток по ней идет против часовой стрелки. Ток представляет собой поток электронов, скользящий по поверхности проводника (только на поверхности — открытые присасывающие желоба). Поток электронов будет увлекать за собой прилегающий эфир, и он начнет также двигаться против часовой стрелки. Скорость прилегающего к проводнику эфира будет определяться скоростью электронов в проводнике, а она, в свою очередь, будет зависеть от перепада эфирного давления (от электрического напряжения на катушке) и от проходного сечения проводника. Увлекаемый током эфир будет затрагивать соседние слои, и они также будут двигаться внутри и вне катушки по кругу. Скорость закрученного эфира распределится следующим образом: наибольшее ее значение, разумеется, — в районе витков; при смещении к центру она уменьшается по линейному закону, так что в самом центре она окажется нулевой; при удалении от витков на периферию скорость также будет уменьшаться, но не по линейному, а по более сложному закону.





Закрученное током макрозавихрение эфира начнет ориентировать электроны таким образом, что все они повернутся до параллельности осей вращения с осью катушки; при этом внутри катушки они будут вращаться против часовой стрелки, а за ее переделами — по часовой; одновременно электроны будут стремиться к соосному расположению, то есть будут собираться в магнитные шнуры. Процесс ориентирования электронов займет какое-то время, и по завершению его внутри катушки возникает магнитный пучок с северным полюсом в нашу сторону, а за пределами катушки, наоборот, северный полюс окажется удаленным от нас. Таким образом, мы доказали справедливость известного в электротехнике правила винта или буравчика, устанавливающего связь между направлением тока и направлением рожденного им магнитного поля.

Магнитная сила (напряженность) в каждой точке магнитного поля определится изменением скорости эфира в этой точке, то есть производной от скорости по удалению от витков катушки: чем круче изменение скорости, тем больше напряженность. Если соотносить магнитную силу катушки с ее электрическими и геометрическими параметрами, то она имеет прямую зависимость от величины тока и обратную — от диаметра катушки. Чем больше ток и чем меньше диаметр, тем больше возможностей собрать электроны в шнуры определенного направления вращения и тем большей окажется магнитная сила катушки. О том, что напряженность магнитного поля может усиливаться или ослабляться средой, уже говорилось.

Процесс преобразования электричества постоянного тока в магнетизм — не обратим: если в катушку поместить магнит, то ток в ней не возникает. Энергия макрозавихрения, существующего вокруг магнита, настолько мала, что не в силах заставить смещаться электроны по виткам при самых малых сопротивлениях для них. Еще раз напомним, что в обратном процессе макрозавихрение эфира, выполняющее роль посредника, лишь ориентировало электроны, и не более того, то есть только управляло магнитным полем, а сила поля определялась количеством однонаправленных магнитных шнуров.

Движение проводника в магнитном поле.

Движение электронов в проводнике возникает только тогда, когда он пересекает магнитный пучок. Этот процесс мы рассматривали чуть раньше, когда говорили об упругой реакции магнитного шнура. Дополним тем, что упруго прогибающиеся под напором проводника магнитные шнуры в какой-то момент рвутся и разрушаются и восстанавливаются только после того, как проводник их пройдет. На их восстановление, естественно, требуется время, поэтому они запаздывают и отстают от движущегося проводника; этим можно объяснить то, что они не смещают электроны в проводнике с обратной его стороны в противоположном направлении. Вполне возможно, что будут рваться и разрушаться не все магнитные шнуры; часть из них, упруго прогнувшись под действием проводника, после его прохождения выпрямится и займет прежнее свое положение; но и в этом случае их оболочки уже не будут смещать его электроны в обратном направлении.





Натыкающиеся на вращающиеся оболочки магнитных шнуров электроны проводника будут легко смещаться вдоль него только в том случае, если не будут испытывать сопротивление; но такого не бывает. Следовательно, под напором шнуров они сначала отступят поперек проводника до предела и только потом уже будут выбирать между тем, чтобы сорваться с проводника и уйти в пространство, или сместиться несмотря на сопротивление вдоль проводника. Отрыв электронов от присасывающих желобов, как мы уже знаем, — затруднителен, поэтому электронам не остается ничего другого, как двигаться по проводнику. Усилие, которое прикладывается к нему, определится силой, стремящейся оторвать электроны от желобов, а эта сила, в свою очередь, будет зависеть от сопротивления движению электронов вдоль проводника. Таким образом мы доказали справедливость закона, определяющего электродвижущую силу электромагнитной индукции, и объяснили известное в электротехнике правило правой руки, согласовывающее направления движений проводника в магнитном поле и тока в нем.

Проводник с током в магнитном поле.

Рассмотрим теперь обратный процесс: поведение проводника с током в магнитном поле. Поток электронов, движущихся по поверхности проводника, буде увлекать за собой прилегающий эфир, и скорость эфира будет убывать при удалении от проводника — подобное мы уже наблюдали. И также, как прежде, убывающая скорость определит отношение движущегося эфира к направлению вращения магнитных шнуров; в данном случае эфир будет усиливать и укреплять магнитные шнуры с одной стороны проводника и противодействовать и разрушать шнуры с другой стороны. Можно даже конкретизировать: укрепляться будут те магнитные шнуры, касательное движение вращающихся оболочек которых будет совпадать с направлением тока в проводнике; и наоборот, разрушаться будут те шнуры, вращение которых противодействует току.

Бегущие по проводнику электроны будут обкатываться по вращающимся оболочкам оставшихся шнуров и отклоняться поперек проводника по мере возможности, а точнее говоря — до упора. Так как дальше в поперечном направлении они сместиться не могут (иначе они должны будут оторваться от проводника), то они потянут за собой в том же направлении атомы и молекулы проводника, возникнет поперечная сила смещения проводника. Очевидно, эта сила будет тем больше, чем больше напряженность магнитного поля и чем больше поток электронов в проводнике; именно такую зависимость отражает известный в электротехнике закон индукции магнитного поля.





Из нашего объяснения становится понятной связь направлений тока в проводнике, вращения магнитных шнуров и вынужденного смещения проводника; эта связь в электротехнике отображается правилом левой руки: если расположить левую руку в магнитном поле ладонью к северному полюсу и так, чтобы рука указывала направление движения тока в проводнике, то отогнутый перпендикулярно большой палец укажет направление действия смещающей электромагнитной силы.

Электромагнитная индукция. Трансформатор.

Эфирная теория позволяет объяснить электромагнитную индукцию, которая, как известно, заключается в том, что изменяющееся во времени магнитное поле порождает электрическое, а изменяющееся электрическое поле порождает магнитное. От себя добавим, что непосредственным участником этих процессов является также эфир в форме макрозавихрения; и об этом мы уже говорили, когда объясняли возникновение в катушке с током магнитного поля.

Обычно явление электромагнитной индукции демонстрируют с помощью постоянного магнита и подвешенного алюминиевого кольца: при приближении магнита к кольцу оно отталкивается, а при удалении от него оно притягивается. Отмечено также, что незамкнутое кольцо (с разрезом) к магниту равнодушно. Почему так происходит?

При приближении магнита к кольцу его магнитные шнуры своими вращающимися боковыми поверхностями будут сдвигать электроны в кольце до упора в осевом направлении и после этого заставят их двигаться по кругу, создавая кольцевой электрический ток, его еще называют вихревым. Подробно о подобном возникновении тока уже говорилось, когда мы рассматривали смещение проводника в магнитном поле. Если магнит будет приближаться к кольцу северным полюсом, то он породит в кольце движение электронов против часовой стрелки (при взгляде со стороны магнита); это — первый этап.

На втором этапе кольцевой электрический ток закрутит эфир в макрозавихрение. Направление вращения завихрения будет таким же — против часовой стрелки, а скорость эфира в нем распределяется по уже известному нам закону, то есть с убыванием к центру и на периферию.

На третьем этапе макрозавихрение соберет электроны в магнитные шнуры и заставит их вращаться в согласованном направлении: внутри кольца — против часовой стрелки, а снаружи — навстречу, то есть породит магнитное поле. Ориентация всех магнитных шнуров внутри кольца будет таким, что их северный полюс окажется направленным в сторону приближающегося магнита.

А дальше произойдет противодействие магнита и кольца, потому что на встречном движении окажутся одноименных магнитных полюса; кольцо будет уклоняться от магнита. (Упругое противодействие магнитных шнуров рассмотрено нами выше.)





Если постоянный магнит удалять от кольца, то сдвигание электронов в кольце будет осуществляться обратными сторонами его вращающихся магнитных шнуров, и электрический ток побежит в другую сторону, то есть по часовой стрелке, а в результате магнитное поле в кольце изменит свою ориентацию на противоположную и будет способствовать смещению кольца в сторону магнита.

Разрезанное кольцо так себя вести не может; в нем электроны не имеют возможности бегать по кругу и не закручивают эфир в макрозавихрение; поэтому процесс электромагнитной индукции прерывается.

Явление электромагнитной индукции используется в трансформаторах; в них ток одной катушки через посредство магнитного поля наводит ток в другой катушке; при этом выдвигается условие, чтобы первичный ток изменялся во времени.

Представим себе две катушки, нанизанные на общий сердечник из магнитно-мягкого материала; по одной из них мы будем пропускать изменяющийся по величине ток; назовем эту катушку первичной; во второй — должен возникнуть вторичный ток; посмотрим, как это произойдет.

При отсутствии первичного тока сердечник размагничен. По мере нарастания тока первичная катушка начнет формировать и усиливать свое магнитное поле. Возникающее магнитное поле начнет расползаться по сердечнику и будет постепенно надвигаться на вторичную катушку; это равносильно тому, что к ней приближается постоянный магнит. В витках катушки возникнет ток, или, точнее сказать, в них появится электродвижущая сила. Так как витки соединены между собой последовательно, то их силы будут суммироваться. При убывании первичного тока весь процесс повторится, но направление вторичного тока будет обратным. Так работает трансформатор.

Эфирная теория позволяет проследить за каждым шагом происходящего процесса и предсказать поведение трансформатора. Опуская подробности, скажем, что при нарастании тока в первичной катушке направление тока во вторичной будет обратным, а при уменьшении — совпадающим. Если же ток в первичной катушке сохранять постоянным, то ее магнитные шнуры не будут смещаться относительно витков вторичной катушки и не вызовут в ней появления электродвижущей силы.


3.4. Поперечные волны эфира («электромагнитные» волны)

К так называемым электромагнитным волнам, то есть к поперечным волнам эфира, электричество имеет самое косвенное отношение: оно может иногда их порождать, — а магнетизм вообще не имеет никакого отношения. Странным и непонятным в истории «электромагнитных» волн кажется все: и их предсказание на основе электромагнетизма, и создание их электромагнитной теории, и — самое удивительное — плодотворность этой теории: благодаря ей был создан потрясающий мир радиоволн; и в основе всего этого — ошибочная теория. Впрочем, ошибочные теории в науке — не новость, и многие из них были на каком-то этапе плодотворными; взять хотя бы для примера ту же планетарную модель атома.

Как выглядят «электромагнитные» волны в свете эфирной теории? Это — обычные поперечные волны эфира; их зарождение и распространение удобно рассматривать на примере радиоволн. Но сначала — образное сравнение: воткнем в воду палку и будем совершать вертикальные колебания; от палки в разные стороны побегут волны. Точно так же рождаются и радиоволны: электроны, бегающие туда-сюда по антенне, увлекают за собой эфир, и тот начинает «волноваться»; волны расходятся от антенны кругами.





Если вникать в природу поперечных колебаний эфира более глубоко, то можно отметить, что они возникают и распространяются благодаря двум таким основополагающим факторам: упругости эфирных шариков и их инерции. Впрочем, упругость и инерция лежат в основе всех колебаний: и звуковых, и механических, и прочих.

Низкочастотные поперечные волны эфира расходятся во все стороны равномерно; высокочастотные — предпочитают распространяться в одном каком-то направлении, а такие, как свет, — лучом, и поэтому амплитуда его колебаний не затухает.

Поперечные волны эфира могут распространяться в различных средах, так как эфир есть везде, но в чистом эфире они распространяются легче всего; и их распространение, как мы видим, никак не связано с электронами, а, значит, и с электричеством, и с магнетизмом.

Кроме поперечных волн в эфире должны существовать продольные: от низкочастотных гравитационных до высокочастотных с частотой, значительно превышающей частоту поперечных волн, — и скорость их распространения должна быть на несколько десятичных порядков выше. Об освоении этих продольных волн приходится пока только мечтать.


1   2   3



Похожие:

3. Электричество и магнетизм iconДокументы
1. /Магнетизм и электричество.doc
3. Электричество и магнетизм iconДокументы
1. /Электричество/3.1.1 Электростатика.doc
2. /Электричество/3.1.2....

3. Электричество и магнетизм iconДокументы
1. /тексты-Пить Электричество/01 - Venenum rerum omnium.txt
2. /тексты-Пить...

3. Электричество и магнетизм iconОглавление Оглавление Часть 1 Эфиродинамические основы электроматнитных явлений Введение Глава Что такое электричество?
Что такое электричество?
3. Электричество и магнетизм iconДокументы
1. /Магнетизм.doc
3. Электричество и магнетизм iconДокументы
1. /шпоры по физике (электричество)/1-5.doc
2. /шпоры...

3. Электричество и магнетизм iconЭфирная физика без электромагнитных волн антонов Владимир Михайлович
Тем более не причастен к поперечным эфирным волнам магнетизм; он притянут сюда «за уши»
3. Электричество и магнетизм iconПриказ №551 ст. Павловская Об итогах проведения районного конкурса рисунков по профилактике детского электротравматизма «Электричество: друг или враг?»
Об итогах проведения районного конкурса рисунков по профилактике детского электротравматизма «Электричество: друг или враг?»
3. Электричество и магнетизм iconДокументы
1. /Электричество.doc
3. Электричество и магнетизм iconДокументы
1. /Электричество.doc
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов