Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении icon

Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении



НазваниеЭксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении
Дата конвертации28.08.2012
Размер129.36 Kb.
ТипДокументы



Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении.



Д.Г. Торр и П. Колен

Отделение физики Университета штата Юта, Логан, UT 84322


Переводчики Семенченко Н.Н., Иван. Редактор перевода Онучин В.


В рассматриваемом эксперименте два стандарта частоты на парах рубидия, используемые как часы, были расположены, приблизительно, на расстоянии 500 м друг от друга и определялся фазовый сдвиг сигналов, как функция времени. Суточное вращение Земли использовалось для изменения направления прохождения сигнала, что позволяло проверить гипотезу о изотропности распространения электромагнитного излучения. Также отслеживалась относительная разность фаз для учета расхождения в показаниях часов. Для каждых из часов скорость дрейфа изменялась вполне ощутимо, в то время как скорость при прохождении луча в прямом и обратном направлении оставалась постоянной в пределах 0,001% с. Типичные вариации скорости, наблюдавшиеся при прохождении луча в одном направлении, совпадали с суточным вращением и составляли от ± 0,1% до 1% с. Относительная точность измерений - 5х10-13.

Ключевые слова: фундаментальные константы; прецизионные измерения; скорость света.
  1. Введение.



В специальной теории относительности традиционно предполагается изотропное распространение света. Принятое предположение анизотропности прохождения вовсе не обязательно противоречит принципу относительности. Например, Винье(Winnie) [1] сформулировал три независимых принципа, которые образуют ядро наблюдений, поддерживающих специальную относительность. Уравнения выражены в е-обобщенной Лоренц форме, которая не требует допущений о скорости луча при прохождении его в одном направлении. Сформулированная в таком общем виде, специальная теория относительности оставляет возможность анизотропии распространении электромагнитного излучения, которое не наблюдается при прохождении луча в обе стороны, или в других подобных симметричных устройствах, обеспечивающих прохождение луча. Однако, нам неизвестны эксперименты, описанные в литературе, с несимметричным прохождением луча, в которых отсутствуют эффекты возможной анизотропии в пространстве.

Источниками возможной анизотропии при прохождении света может быть неравномерность в распределении материи в масштабах Вселенной, или, возможно, существование «абсолютного пространства», как предполагал, Пуанкаре [2] в его строгой теории относительности, которая основывается на нерелятивистской теории Лоренца.[3].
Жайннони (Giannoni) [4], например, формулирует целый спектр нерелятивистских теорий, которые удовлетворяют сути принципов Винье [1], свободных от синхронизма, а Торр и Колен [5], обосновали, что СТО и формулировка Пуанкаре[2] теории Лоренца [3 ] лежат в предельных концах спектра теорий, каждая из которых удовлетворяет сущности принципов Винье [1], модернизированных Жайннони [4].

Таким образом, имеются достаточные теоретические обоснования для измерения скорости света при прохождении луча в одном направлении, и есть соответствующий эксперимент, с необходимыми приборами. В этой статье мы приводим результаты экспериментов, в которых вращение Земли вызывало фазовый сдвиг электромагнитного излучения, возникающий при прохождении луча света в одном направлении.

^

2. Исторические проблемы эксперимента с прохождением луча света в одном направлении.



Исторически сложилось неверное представление относительно осуществимости любых экспериментов задуманных для измерений прохождением луча света в одном направлении. Считалось, что эти эксперименты бессмысленны. Действительно, чтобы осуществить измерение времени прохождения светового импульса, необходимо синхронизировать двое часов, разнесенных на некоторое расстояние d. Чтобы это осуществить, очевидно, необходимо сделать некоторые предположения о скорости разнесения часов как функции направления, поскольку процесс движения влияет на частоты часов, т.е., они не могли быть локально синхронизированы, а затем разнесены без некоторого неизвестного изменения в фазе. Таким образом, знание скорости разнесения необходимо, чтобы синхронизировать часы, что создает замкнутый круг аргументов, который возвращает к концепции бессмысленности подобных экспериментов.

В эксперименте, о котором сообщается в этой статье, мы обошли эту проблему, отказавшись от требования, чтобы часы были синхронизированы. Вместо этого мы наблюдаем за изменениями в относительных фазах сигналов, сгенерированными двумя часами; при этом изменения в относительных фазах могут возникнуть только в том случае, если односторонняя скорость света зависит от направления. Как бы то ни было, обнаруживается, как следует из дальнейшего, что из этих экспериментов может быть выведена даже абсолютная скорость прохождения сигнала.

  1. ^

    Описание эксперимента.


В эксперимент, который мы проводили, в качестве часов использовались два стандарта частоты на парах рубидия фирмы Хьюлет Пекард, модель 5065А, которые измеряли время прохождения электромагнитных импульсов на расстоянии ~ 500 м между ними. Схема эксперимента, при которой получились лучшие результаты, приведена на Рис. 1. Каждые часы генерировали синусоиду с частотой 5 МГц и среднеквадратичной амплитудой ~ 1,5 В. Сигнал с часов А использовался для запуска Универсального Счетчика временных интервалов модели 5370А. Сигнал с часов В использовался, чтобы остановить этот счетчик.





Рис.1. ^ Схема эксперимента.


Из теории, на которой основывается эксперимент, следует, что, если стабилизация часов достаточно совершенна, то фаза сигнала, при некотором произвольном значении времени счетчика интервалов составит:


Δt1 = Δt + d/c, (1)


Где Δt – начальная фаза за счет прохождения луча между часами.

d = 500 м,

c– скорость прохождения в течение этого времени при

данной ориентации экспериментальной установки.

Чтобы изменить ориентацию часов, используется вращение Земли, и через двенадцать часов мы имеем:

Δt2 = Δt + d/c, (2)


где с - вообще говоря, другое значение скорости прохождения сигнала. Следовательно, вычитание двух измеренных интервалов даст нам:


δt = Δt2 – Δt1 =d/c - d/c = (3)


= d(c - c)/cc (4)


Естественно, если специальная теория относительности верна, то с = с = с и

δt = 0.

В приближении первого порядка:

δt = dv/c2 ≈ Δt·v/c. (5)


Где Δt = d/c, (6)

v = (c - c)/2 (7)


Следовательно, v ≈ cּδt·/Δt (8)

Поскольку при круговых измерениях мы получаем Δt, c и c могут быть определены как функции времени.

Однако, в действительности простота этого подхода осложнена ошибками измерений, которые мы обсудим в разделе 5.


  1. ^

    Экспериментальная установка.




На рис.5 схематично представлены детали экспериментальной установки, использованной нами. Часы были расположены в 500 м друг от друга и соорентированы в направлении с востока на запад. Сигнал синусоидальной формы 5 МГц, пропускался через коаксиальный кабель заполненный азотом с избыточным давлением ~ 2 Пси (фунта на кв. дюйм - 0,14 атм.), обеспечиваемое через двухступенчатый регулятор. Термостабилизация ±1 К в течение суточного цикла достигалась размещением кабеля на глубине 5 фт (1,5 м) ниже поверхности, и оборудование с соответствующей защитой ниже 10 фт (3 м). Защита от электрических помех обеспечивалась помещением оборудования в камеру Фарадея.

На рисунке 2 показано схематическое устройство питания установки постоянным током с изменением входного напряжения ±10 mV. Электропитание подавалось в камеру Фарадея через фильтры электромагнитных помех.


Рабочие характеристики рубидиевых часов были оценены разнесением часов на 1 м (нулевое разнесение). Для этого случая были определены ограничения, наложенные на измерения из-за ошибок часов, и сформулированы требования для успешного проведения эксперимента. Результаты обсуждаются в разделе 6.




24 В



500 м


120В

120В

12В

12В



SOLA

Модулятор

АС

Преобразователь АС-DC.

56А 12В

Батарея

Инвертор DC 12В/

120В AC

5370А счетчик интервалов


ЕМ фильтр


DC Вход


Газонаполнненнцй коаксиальный. кабель


24В

24В

24В


56А 24В

Батарея


ЕМ фильтр

Часы 5065А (на парах рубидия)

Ист. Пит. Часов. Не заземлен.


Фарадеева и магнитная защита


Сохранение

данных на дискете компьютера.



^ NEFF-400 В




Принтер

Электронная блок-схема эксперимента.

Рис. 2. Блок-схема, показывающая расположение экспериментального оборудования.




^

5. Эволюция ошибок измерения стандартов частоты на парах рубидия.



В соответствии с информацией поставщика, в рубидиевых часах существуют два основных источника ошибок. Это:

а) Стабильность – представляет собой практический предел установления на обоих часах колебаний с идентичной частотой. Эта ошибка накапливается со временем.

б) ^ Дрейф частоты – эта ошибка обусловлена «долгосрочными» шумами, и дает

нелинейный дрейф со временем.

Наблюдая за часами при нулевом расстоянии (т.е. ≈ 1 м), можно измерить их относительный дрейф и, следовательно, определить, как изменяется ошибка, и тем самым, точно ее определить. В соответствии со спецификацией поставщика [6] накопленная ошибка рубидиевых часов может быть выражена следующим образом:


T(t) = (1/2)at2 ± bt ± t0 (9)

Где

T(t) = общая накопленная ошибка, соответствующая текущему времени.

а = скорость дрейфа частоты ≈ 1х10-11 в месяц.

B = (f0/fr - 1) = стабильность = ± 2х10-12 сек/сек.

f0 = начальная частота осциллятора,

fr = текущая частота, и

t0 = начальная временная ошибка.

Чтобы вычислить разницу в накопленных ошибках двух рубидиевых часов, уравнение (9) приведем к виду:

ΔT(t) = 1/2(a1-a2)t2 ± brtt ± t0 (10)

Где

ΔT(t) = относительная накопленная ошибка,

а1,2 = частотный дрейф констант соответствующих часов

br = (b1 – b2) = (f10 –f20)/fr, и

f10,20 = начальная частота соответствующих часов при t = 0.

Из уравнения (10) видно, что, если а1 ≈ а2, ΔΤ(t) может быть аппроксимировано:

ΔT(t) ≈ brt ± t0 (11)

что для достаточно короткого промежутка времени позволяет пренебречь квадратичным членом. Этот момент важен при таком использовании рубидиевых часов, которое будет детально обсуждаться в разделе обработки данных.

Чтобы охарактеризовать поведение часов по отношению друг к другу, мы отслеживали их поведение в течение 8 недель при нулевом разделении. На рис.3 изображена типичная наблюдаемая относительная скорость дрейфа. Мы изобразили относительную накопленную ошибку часов ΔT(t) за 7 дней. Эти результаты показывают, что модель, которую мы приняли - типичная. Тенденция дрейфа у часов - линейная в течение нескольких дней. Эти линейные периоды дрейфа перемежаются с нелинейными периодами, когда наклон кривой изменяется быстро, а потом опять возвращается к линейным.



Рис.3. ^ Типичная скорость дрейфа, полученная для Стандарта Частоты на парах рубидия, за период 7 дней от нулевого момента.


На рис.4 показан типичный линейный сегмент в течение одного дня после нулевого разнесения часов. На рис.5 показаны разности, т.е. с убранной линейной тенденцией (дрейфа).

В целом, средние значения отклонений от линейности через много дней совпадают со спецификациями поставщика, и когда неожиданно возникают большие вариации в течение несколько часов, они ясно идентифицируются. В пределах линейных сегментов ошибка часов раз в десять меньше, чем указывается поставщиком. Используя спецификации поставщиков, мы вычислили значение нелинейных компонент как ~15 нсек. в день. Однако, наблюдаемое отклонение от линейности через 24 часа для «линейного сегмента» редко превышают 1,5 нсек, что позволяет нам делать измерение с относительной точностью ~1часть в 5х1013.



^

Рис.4 Участок типичного линейного дрейфа в течение 24 часов при нулевом


разнесении часов.




Рис.5 Типичная остаточная скорость дрейфа, полученная после удаления линейных

участков.


^

6.Результаты с рубидиевыми часами.



В течение нескольких месяцев были получены результаты для часов с нулевым разнесением. Когда часы были разнесены на 500 м, выяснилось, что поведение погрешности, значительно отличается от того, что наблюдалось с нулевым разнесением. Возникали в нескольких случаях очень большие (~10 нсек) отклонения от линейности. Два примера приведены на рис. 6. Однако, нельзя быть абсолютно уверенным, что такое поведение - это не просто другая форма нелинейной модели, показанной на рис.3, даже хотя часы не показали что-либо похожее в условиях нулевого разнесения. Наши результаты показывают, что отклонения от линейности для разнесенных часов остаются ниже порога (~1,5 нсек) 30% по времени. Амплитуды между 1 и 3 нсек наиболее типичные. Не только амплитуда сигнала изменяется день ото дня, но то же самое происходит и с фазой. Поскольку нет теории, которая могла бы объяснить эти изменения, мы полагаем, что существенно повторить эксперимент с различными часами, такими как цезиевые пучки, которые не показывают нелинейные вариации, которые являются спецификой стандартов частоты на парах рубидия.



Рис.6. Звездочками отмечены типичные изменения, записанные в журнале, полученные для нулевого разделения, когда компоненты линейного дрейфа удалены. Результаты, полученные для типичного дня для разнесенных часов, показаны треугольниками. Крестики и квадратики представляют максимальные наблюдаемые изменения из рабочего журнала, исключая случаи, которые показывают внезапные «квантовые» изменения в скорости дрейфа, который явно обусловлен ошибками часов.


Если эти отклонения реальны и эксперимент показывает наличие динамического «абсолютного пространства» или эффектов анизотропного распределения материи во вселенной, тогда в наблюдаемых изменениях должно присутствовать движение солнечной системы в галактике. Это должно наблюдаться как модуляция сигнала синусоидой с периодом в 24 часа. Компонента скорости солнечной системы в плоскости эклиптики ~105 м/сек, которая соответствует вариациям амплитуды ~ ±0.5 нсек. Обнаруженные вариации, которые превосходят ±3 нсек в течение 30% по времени, значительно больше, чем потребовалось бы накопление сигнала в течение года, чтобы обнаружить этот сигнал, при отношении сигнал-шум 3 к 1. Поэтому, мы использовали выборку данных, ограниченных вариациями амплитуд <3 нсек. Время требующееся, чтобы получить данное отношение сигнал-шум (СШО) дается, как


СШО = δt•√N/σe (12)


или


т.е. N = (СШО)2·σе2/δt2 (13)


где δt = значение сигнала амплитуды,

σе = стандартная девиация данных, и

N = сидерический отсчет дней.

Если мы положим СШО = 3,

δt = 0,5

σе = 3 нсек.

N = 324 сидерических дней для вероятности 30%, что значительно превосходит число дней получения данных. Следовательно, ожидаемый сигнал на нашей установке еще не обнаружен.

Рис.7 показывает результат, полученный объединением, данных за 23 дня, для которых максимальная амплитуда никогда не превосходила 3 нсек. Из этих результатов мы можем определить верхний предел δt в 0,5 нсек, т.е.


v ≤ 90 км/сек


Это достаточно близко к скорости Солнечной системы в плоскости галактики.




Рис.7. Последовательная сумма данных за 23 дня для разделенных часов за период с февраля по июнь 1981 г. Суммирование было выполнено с использованием получасовых накоплений.


7.Заключение.



Главный результат, который неожиданно появился в этой работе – это демонстрация способности измерения однонаправленной скорости света. Используемые часы могли бы определить достаточно точно абсолютную одно направленную скорость. Данные, накопленные за три года, со стандартами частоты на парах рубидия, обеспечили бы недвусмысленное обнаружение движения Солнечной системы в Галактике, если такое движение обнаружимо таким методом. Нами получены результаты, показывающие большие изменения с (от 0,1% до 1% с) для разнесенных часов, которые не наблюдались (в той же самой конфигурации) для нулевого разнесения. Потребуется больше времени наблюдения, чтобы дать однозначный ответ: были ли полученные изменения на самом деле ошибками часов или нет.

Мы полагаем, что двусмысленность может быть значительно уменьшена при оптимальном использовании часов на пучках цезия, что значительно улучшит стабильность часов.


Ссылки.


[1] J.A.Winne. Phil. Sci. 37, S1 (1070); 37 223 (1970).

[2] H. Poincáre, C.R. Acad. Sci. 140, 1504 (1905).

[3] H.A. Lorentz, Proc. K. Ned. Akad. Wet. 6, 809 (1904).

[4] C. Giannoni, Found. Phys., 9, 427 (1979).

[5] D. Torr and P. Kolen, Found. Phys, 12, 265 (1982).

[6] Hewlett Packard Company Report: Application Note 52-2, «Time Keeping and Frequency Calibration» (1976).







Похожие:

Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconСхема устройства для измерения отклонений луча света Ω

Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconМатвеев А. Н. Механика и теория относительности (М.: Мир и образование, 2003. – фрагменты из книги) стр. 84
Особенно они велики при скоростях, близких к скорости света. Эти отклонения впервые были открыты при исследовании скорости света,...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconЭксперимент opera, и сверхсветовая скорость нейтрино 26 сентября 2011
А и tВ, причем tА-tВ = rАВ/v + rАD/c. За это время вещество струи смещается поперек луча зрения на расстояние rbd = rad sin α. Поэтому...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconУ. И. Франкфурт, А. М. Френк оптика движущихся тел (М.: Наука, 1972, фрагменты из книги) стр. 113 Независимость скорости света от скорости источника
По Ритцу, свет после отражения распространяется так, будто он исходит из некоторого центра, движущегося со скоростью источника и...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconНикитин Г. Г
Приводятся экспериментальные и теоретические данные в пользу наблюдаемого эффекта. Уточнена степень влияния некоторых факторов на...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconКлассические идеи о фотоэффекте и эффекте комптона
При некоторой предельной скорости электрона, зависящей от скорости падающего света, электрон оставляет пластинку. Полный резонанс...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconА. Г. Баранов метод экспериментальной проверки независимости скорости света от скорости источника
Предложена схема прямой экспериментальной лабораторной проверки независимости скорости света от скорости источника, в которой измеряемый...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconИзмерение скорости света
Земли вокруг Солнца. Он впервые сделал вывод о конечной скорости распространения света и определил ее величину. По его подсчетам,...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconСверхсветовые и квзи-сверхсветовые скорости (обзор) Проведен обзор экспериментально доказанных случаев превышения «скорости света»
Проведен обзор экспериментально доказанных случаев превышения «скорости света» электромагнитной волной при определенных условиях,...
Эксперимент по определению относительных отклонений в скорости света при прохождении луча в одном направлении iconБураго С. Г. 27. Об опытной проверке зависимости скорости света от скорости источника
Естественно, мы не первые, кого заинтересовала эта проблема. В истории науки известна дискуссия, состоявшаяся в журнале Physikalische...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов