Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление icon

Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление



НазваниеИзготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление
страница1/6
Дата конвертации28.08.2012
Размер0.52 Mb.
ТипДокументы
  1   2   3   4   5   6

Изготовление аэрообвеса на автомобиль своими силами

Компиляция статей и публикаций интернета


Вступление


Взяться за компиляцию материалов по данной тематике меня заставило личное желание самому освоить и применить на практике различные способы изготовления деталей внешнего тюнинга (аэрообвеса) автомобиля. Учитывая повышенный интерес к данной теме и других лиц «двинутых» на автотюнинге решил оформить все в виде текстового файла в котором будут собраны все найденные мною по искомой теме в дебрях интернета статьи и публикации. Во всех случаях авторство за данными публикациями сохранено и для каждой статьи указан источник откуда он взят. В случае обнаружения авторами данных публикаций каких-либо неточностей и погрешностей в указанных реквизитов статей, просьба не обижаться и учитывать что цель моей компиляции абсолютно не коммерческая.

Практически все статьи были взяты либо с сайтов по авиамоделированию либо с сайтов по судостроению и практические рекомендации по данным направлениям, ввиду схожести технологий и искомых результатов, могут быть полностью учтены при изготовлении деталей аэрообвеса автомобилей.

Для полноты охвата всей темы и дабы не упустить что-то важное приводятся все публикации начиная от классификации конструкционных материалов до изготовления изделий из них и заканчивая окраской.

Если у кого-то возникнут предложения, комментарии либо кто-то пожелает поделиться опытом по данной теме, просьба писать на адрес : messadot@mail.ru


Messadot


Конструкционные материалы применяемые при изготовлении деталей из стеклопластика

^

Синтетические смолы



Классификация синтетических смол

(Материал фирмы MAS Epoxy)

(ист - http://www.t22.nm.ru Автор перевода - Сергей Баркалов)

    Эти смолы применяются в судостроительной промышленности для пропитки волокон в процессе изготовления изделий из волоконно-армированного пластика. Независимо от природы волокна (стекловолокно , углеволокно , кевлар , древесное волокно) , адгезия смолы и пропитываемость волокон являются самым важным моментом для производства качественного изделия.

^ ЭПОКСИДНЫЕ СМОЛЫ. Представляют самое универсальное семейство смол , применяемых для производства композитных конструкций и судоремонта. Практически по всем параметрам эти смолы обеспечивают самые высокие показатели клеевого шва и прочности . В настоящее время разработаны смолы , не содержащие вредных для здоровья веществ и не выделяющие при отверждении фенола . Смолы обладают крайне малой усадкой .
В случае ремонта компонента , изначально изготовленного на основе полиэфирных и винилэфирных смол и подвергнутого деформации и трещинам , хорошо армированная эпоксидная смола имеет прочность связи с основой 2000 пси (у винилэфирной 500 пси) . Не имеет значения , из какого сочетания древесины , углеволокна , кевлара , стекловолокна и заполнителя состоит ремонтируемое изделие , смола хорошо впитается и навсегда образует с ним композитное единое целое. Когда эпоксидная смола используется в качестве химически стойкого барьерного слоя , покрытие ею обладает очень низким водопоглощением ( менее 0.5%) и можно быть уверенным в том , что отделочные покрытия будут иметь хорошее сцепление с эпоксидной основой , а основа – с корпусом судна . Современные эпоксидные смолы могут обладать низкой вязкостью и контролируемым временем отверждения.

^ ВИНИЛЭФИРНЫЕ СМОЛЫ. Отражают шаг в верном направлении развития смол. Хотя и имеют тот же пероксидный механизм образования пространственных связей , что и полиэфирная смола. Дополнительную прочность этим гибридным смолам придают эпоксидные молекулы , заложенные в их основу . Усадка при отверждении умеренная. Повышенная прочность модифицированной смолы предотвращает образование микротрещин , а сама основа смолы к тому же служит повышению адгезии к поверхности. Обладают неплохими водостойкими качествами и некоторые имеющиеся в продаже барьерные покрытия изготовлены на основе смол этого семейства. К отрицательным сторонам винилэфирных смол относятся критичность к их приготовлению , высокий уровень содержания вредных веществ (в форме стирола) , чувствительность к влажности и температуре (может не полимеризоваться) . Хорошая винилэфирная смола весьма дорогая по сравнению с полиэфирной , и по цене близка к эпоксидной. Винилэфирные смолы несомненно превосходят по характеристикам полиэфирные при рассмотрении стандартного пероксидного процесса , однако их адгезия к разнородным и ранее отвержденным поверхностям все еще остается крайне низкой и многие корпуса на базе винилэфирной смолы страдают все той же проблемой массового отслоения наружного слоя стеклопластика от заполнителя и переборок. Плюс ко всему практически всегда барьерные покрытия наносятся уже после продажи судна и здесь очень важно , чтобы это покрытие имело прочную связь с основой. Винилэфирные смолы обладают хорошей адгезией к стекловолокну и низкой адгезией к более экзотическим материалам (кевлар , углеволокно) и древесине. Для отверждения полиэфирных и винилэфирных смол на открытой поверхности требуется введение специальных добавок. Нанесение последующих слоев нуждается в тщательной подготовке поверхности для обеспечения адгезии.

^ ПОЛИЭФИРНЫЕ СМОЛЫ. Самые дешевые из всех смол , применяемых в стеклопластиковом судостроении с использованием отрицательной формы в виде матрицы. Главное преимущество полиэфирных смол по сравнению с винилэфирными и эпоксидными – их крайняя дешевизна. Отрицательными сторонами являются плохая адгезия , высокий уровень фильтрации воды , сильная усадка и высокое содержание вредных веществ. Могут применяться только со стекловолокном. Лучше всего подходят для изготовления конструкций , не критичных к весу , адгезии и прочности на излом. Примером может служить изготовление простого цельного стеклопластикового элемента в открытой матрице за одну операцию и без образования вторичных соединений на этой смоле. Если точность формы не очень важна , водостойкость не имеет значения и место работы имеет хорошую вентиляцию , тогда полиэфирная смола будет главным кандидатом. Полиэфирные смолы с давних времен обладают плохими характеристиками в области адгезии и растяжения , в результате чего готовое изделие склонно к образованию микротрещин и формированию слабого вторичного клеевого соединения . Эти характеристики приобретают значение , когда заходит речь о соединении разнородных материалов в одном изделии или когда материалы не имеют обычной стекловолокнистой основы. Готовый корпус на основе полиэфирной смолы страдает осмотическим пузырением , если его не обработать эпоксидной смолой для образования барьерного покрытия. Верфи завалены корпусами и надстройками , пораженными огромными участками расслоения стеклопластика и отделения его от заполнителя. Все это стало результатом повсеместного в промышленности нарушения технологии склеивания (использования полиэфирной смолы в качестве клея).


^ ХИМИЯ ЭПОКСИДНЫХ СМОЛ
(из руководства EPOXY BOOK фирмы System Three)


(ист - http://www.t22.nm.ru Автор перевода и комментариев - Сергей Баркалов)

    Для того , чтобы построить лодку , вовсе ни к чему детальное вникание в химию смол , но знание основ их химии поможет в успешном завершении проекта и позволит избежать ошибок и разных сюрпризов , которые могут возникнуть при работе со смолой.

    Смола , лежащая в основе всех эпоксидных клеев , применяемых в судостроении , называется диглицидиловый эфир бисфенола А . Бисфенол А получают путем взаимодействия фенола с ацетоном при определенных условиях . Буква А обозначает ацетон , "фенол" обозначает фенольные группы , а "бис" обозначает двойку. Таким образом бисфенол А является химическим продуктом , представляющим собой комбинацию двух молекул фенола с одной ацетона . Затем бисфенол А вступает в реакцию с веществом под названием эпихлоргидрин . В результате реакции по обеим сторонам молекулы бисфенола А прикрепляются две ("ди-") глицидоловые группы . Получившееся вещество называется диглицидиловый эфир бисфенола А , или же основная эпоксидная смола . Именно глицидиловые группы взаимодействуют с атомами водорода аминов в отвердителе , в результате чего и получается отвержденная эпоксидная смола.

    Основная эпоксидная смола обладает высокой вязкостью и малопригодна для судостроительных целей , разве что в качестве клея в некоторых ситуациях . Производители эпоксидных составов приобретают смолу именно в такой форме и затем добавляют к ней определенные компоненты (модифицируют) для придания необходимых свойств .

    Отвердители , применяемые с эпоксидной смолой при комнатной температуре , в большинстве своем полиамины . То есть органические молекулы , содержащие две и более аминогруппы . Аминогруппы по структуре напоминают аммиак , только присоединены к органическим молекулам . И как и аммиак , амины являются сильными щелочами . Из-за этого сходства отвердители эпоксидных смол зачастую обладают аммиачным запахом , который наиболее ощутим в замкнутом объеме сосуда хранения сразу после его открывания . На воздухе же этот запах мало ощутим из-за высокого давления паров полиаминов.

    Вступающие в реакцию аминогруппы представляют собой атомы азота с присоединенными к ним одним-двумя атомами водорода . Эти атомы водорода взаимодействуют с атомами кислорода из глицидиловых групп эпоксидной смолы и получается отвержденная смола - термореактивная пластмасса с большим количеством пространственных связей . При нагревании она размягчается , но не плавится . Трехмерная структура обеспечивает ей отличные физические свойства .

    Соотношение атомов кислорода глицидола и атомов водорода аминов с учетом различных молекулярных масс и плотностей и определяет в конечном счете соотношение смолы и отвердителя . Изменение указанного соотношения приведет к тому , что останутся вакантные атомы кислорода или водорода в зависимости от отклонения в ту или другую сторону . В итоге отвержденная смола будет обладать меньшей прочностью из-за неполного образования пространственных связей.

    Отвердители эпоксидных смол не являются катализаторами . Катализаторы способствуют реакции , но химически не являются частью конечного продукта . Отвердители же эпоксидных смол образуют пары с молекулами смолы , что сказывается на конечных свойствах отвержденного продукта .

    Время отверждения эпоксидной смолы зависит от реакционной активности атомов водорода аминов . И хотя присоединенная органическая молекула не принимает непосредственного участия в химической реакции , она влияет на то , как скоро атомы водорода аминов покидают азот и взаимодействуют с атомами кислорода глицидола. Таким образом , время отверждения определяется кинетикой данного амина , используемого в качестве отвердителя. Это время можно изменить , применив другой отвердитель , добавив в смолу акселератор или изменив температуру или массу смеси смолы с отвердителем .

    Реакция отверждения ЭС - экзотермическая .Это означает , что при ее отверждении выделяется тепло . Скорость , с которой смола отверждается , зависит от температуры смеси . Чем выше температура , тем быстрее реакция. Скорость ее удваивается при повышении температуры на 10° С и наоборот . К примеру , если при 20° С смола становится свободной на отлип за 3 часа , то при 30°С на это потребуется 1,5 часа и 6 часов при 10°С . Все возможности повлиять на скорость отверджения сводятся к этому основному правилу . Время жизнеспособности смеси и время работы с ней в основном определяются изначальной температурой смеси смолы с отвердителем .

    Временем желатинизации (гелеобразования) называется время , необходимое для данной массы , находящейся в компактном объеме для ее обращения в твердое состояние . Это время зависит от первоначальной температуры смеси и следует вышеописанному правилу. К примеру , если 100 г смеси смолы с отвердителем обращаются в твердое состояние за 15 минут при исходной температуре в 25°С , то при исходной температуре в 15°С на это потребуется около получаса . Если при тех же 25°С эти 100 г равномерно размазать по площади в 1 м2 , полимеризация займет свыше двух часов . Время полимеризации помимо температуры зависит и от отношения площади к массе смолы .

    Суть происходящего заключается в следующем . В ходе реакции выделяется тепло . Если выделяемое тепло сразу поглощается окружающей средой (как это происходит со смолой в виде тонкой пленки) , температура полимеризующейся смолы не возрастает и скорость реакции остается неизменной . Если же смола занимает компактный объем (как в случае банки) , экзотермическая реакция повышает температуру клеевой смеси и реакция ускоряется.

    Время работы со смолой составляет примерно 75% от времени желатинизации из-за геометрической формы емкости . Его можно увеличить путем увеличения площади поверхности , уменьшения массы смеси или охлаждением смолы и отвердителя перед смешиванием. Вязкость смеси в емкости будет расти (к примеру , при 25°С) в абсолютных единицах в силу полимеризации , но из-за разогрева смеси будет казаться , что вязкость уменьшается. Клей на стадии 75% времени желатинизации будет казаться очень жидким (из-за высокой температуры) , но если при этом его охладить до комнатной температуры , он окажется очень густым . Густая же смола на стадии частичной полимеризации не так хорошо пропитывает стеклоткань и ложится на склеиваемые поверхности . Опытные специалисты либо готовят смесь , которая сразу наносится , либо для замедления реакции увеличивают площадь поверхности .

    И хотя скорость полимеризации смолы и зависит от температуры , сам механизм от нее не зависит . Быстрее всего реакция протекает в жидком состоянии смолы. По ходу полимеризации смола меняет состояние с жидкого на липкое вязкое гелеобразное . После гелеобразования скорость реакции замедляется по мере нарастания твердости. В твердых телах химические реакции протекают медленнее. От состояния мягкого липкого геля смола переходит к более твердому , постепенно теряя липучесть. Со временем липучесть исчезнет и смола продолжит набирать твердость и прочность .

    При нормальной температуре смола достигает от 60 до 80% окончательной прочности спустя 24 часа. Дальнейшее отверждение будет продолжаться в течение последующих нескольких недель , достигнув в конце концов точки , когда дальнейшее отверждение будет невозможно без значительного роста температуры. Однако для судостроительных целей можно считать , что смолы , полимеризующиеся при комнатной температуре , окончательно отверждаются спустя 72 часа при 20°С.

    Как правило , лучше работать с возможно малым временем полимеризации , насколько это позволяет конкретная ситуация . Это дает возможность переходить к следующему этапу , не тратя времени на ожидание отверждения клея. Клеевая пленка с малым временем полимеризации меньшее время остается липкой и успеет подцепить меньше следов на ней насекомых , их самих и прочего летучего мусора .

    Эпоксидные смолы могут в процессе отверждения образовывать на своей поверхности тонкую пленку. Она формируется в присутствии углекислого газа и паров воды , особенно в холодную сырую погоду , нежели в теплую и солнечную .Эта пленка водорастворима и должна быть удалена перед шлифовкой или покраской.

    Незащищенная эпоксидная смола плохо перносит солнечный свет (УФ излучение) . Спустя примерно шесть месяцев нахождения под ярким солнечным светом начинается ее распад. Дальнейшее облучение вызывает меление и неизбежное ее разрушение с потерей всех физических свойств. Решение проблемы лежит в защите смолы при помощи краски и лака , содержащих УФ защиту.

    Необходим очень осторожный подход при применении эпоксидных смол в паре с полиэфирными . При этом надо соблюдать одно главное правило : эпоксидную смолу можно наносить поверх отвержденной полиэфирной , которая при этом обезжирена и зачищена , но никогда нельзя наносить полиэфирную поверх отвержденной эпоксидной . Амины , не вступившие в реакцию в эпоксидной смоле , будут препятствовать катализатору (пероксиду) полиэфирной смолы , в результате чего на их границе смола будет не полностью отвержденной. Шлифование поверхности никак не влияет на присутствие аминов. Клеевое соединение при этом будет слабым , хотя поверхность и будет выглядеть отвержденной.

Перевод - С.Б. 

Некоторые комментарии по поводу "сюрпризов" , упоминаемых в начале статьи - (С.Б.).

    Все зарубежные материалы по эпоксидным смолам  были обнаружены на стадии 99% готовности проекта и лишь подтвердили , что многие из догадок на самом деле являются закономерностями для всех эпоксидных смол , а не частными свойствами моей смолы .

    При оклейке корпуса стеклотканью не очень хочется следовать советам из руководства и готовить смолу мелкими порциями ( возня с шприцами , мензурками и весами раздражает) . Я грубо прикинул свой расход на одно полотнище стеклоткани и замесил 5 кг смолы (уж не знаю , как я там считал :-)) . Далее был "сюрприз" . Смола в ведре стала греться настолько интенсивно , что я еле-еле успел размазать по днищу меньше половины содержимого . И поскольку эта смола была уже на границе своей работоспособности , то и ткань она пропитать толком не смогла - получились непроклеи , пузыри , комки и прочий брак. Короче , пришлось его сошлифовывать . В дальнейшем я опытным путем обнаружил , что для меня оптимальным является 2-килограммовый замес (для первичного покрытия). При этом емкость со смолой я помещал перед введением отвердителя в микроволновку ( делалось это исключительно с целью снижения вязкости , т.к. качественно перемешать 2 кг смолы при 20 градусах очень проблематично) , после чего вводился отвердитель , все быстро размешивалось , почти все выливалось на корпус и резиновым валиком распределялось по предполагаемому участку оклейки .Приходилось , правда следить за подтеками и в процессе валиком возвращать смолу на место.

    Точно такая же ситуация и в области прочих эпоксидных продуктов . Последним из виденных мной "эпизодов" был килограммовый замес эпоксидной эмали для покраски днища яхты соседом по стоянке. Эмаль в банке обратилась в монолит буквально спустя четверть часа и с пользой ее было израсходовано немного. Я и сам потом с ней экспериментировал и нашел , что 300 г при неторопливой тщательной работе кистью - для меня предел . Так что начинать все же надо с небольших доз ;-) и , постепенно их увеличивая , найти оптимальный для себя объем .

    Для меня большой проблемой в процессе строительства была температура окружающей среды (строил я под навесом). Как выяснилось , при падении температуры ниже 16-18 градусов смола категорически отказывается полимеризоваться. При этом могло оказаться так , что , работая в стахановском порыве до захода солнца в июне , наутро я обнаруживал смолу в точно таком же состоянии , как оставил вечером (ночи под Петербургом в эту пору холодные и реакция отверждения стоит при этом на месте) . Это если повезет . А если ночью выпадет роса , то вся поверхность еще липкой смолы превращается в белесую сопливую массу , которая уже никогда не "встанет" и доставит массу проблем при исправлении. В известном бестселлере "15 проектов" предлагается для отверждения смолы в условиях пониженной температуры добавлять в нее ускоритель диметиланилин (ДМА) , но по моему личному мнению , это (хм-хм) … неправда. Дело в том , что эта отрава имеется в наличии во всех фирмах , работающих с полиэфирной смолой , а механизм отверждения у полиэфирных и эпоксидных смол абсолютно разный. К тому же ДМА имеет вид раствора в стироле , который опять же присутствует в полиэфирке и намекает на свое предназначение именно для данного типа смол. Но это все , так сказать , дедукция :-) , а я не химик . Я на всякий случай его приобрел и применил в рекомендованных  пропорциях (а потом и в более широких) . Температура в начала августа 98 стояла градусов 12 в полдень и покрытие неделю оставалось липким и жутко воняло . Встало оно только тогда , когда температура достигла положенных градусов 20 . В химической литературе в качестве акселератора для эпоксидных смол упоминается вещество по имени трифенилфосфит , но про низкую температуру там ничего не говорится , а найти его для опытов мне не удалось . Так что эта тема меня по-прежнему интересует .

    При склеивании же в условиях критических для отверждения температур я случайно обнаружил способ , который , как выяснилось , в фирменном материале критикуется , но на деле же работает. Готовится клеевая смесь и в нее втыкается термометр . Довольно скоро температура начинает расти и по достижении градусов 35 и более клей используется по назначению (можно также следить за консистенцией и ловить момент быстрого ее снижения) . При этом смола будет иметь довольно низкую вязкость , что говорит о том , что реакция уже "далеко зашла" . Приготовленный таким способом клей в граничном к желатинизации состоянии неплохо встает и при пониженной температуре , но использовать его надо очень быстро.

    В web-литературе я неоднократно встречал предложения использовать разные варианты фенов (от женских до промышленных) для ускорения отверждения при описываемых обстоятельствах . Я это тоже пробовал и результаты были плохие. Во первых - поддерживать тепло на площади 8 м2 (один кусок стеклоткани по длине моего корпуса) одним феном в течение длительного времени невозможно , а во вторых - на близких к вертикальным поверхностях при повышении температуры густая на холоде смола размягчается и может образовывать подтеки. Однако допускаю , что на малых площадях это годится.

    И напоследок еще раз напомню о необходимости соблюдать требуемое соотношение смолы и отвердителя . Одной из отрицательных сторон нарушения может быть пониженная прочность смолы вплоть до гелеобразного состояния (в зависимости от того , какого "ускорения" хотели добиться и насколько перебрали отвердителя). Вторым же сюрпризом является то , что смола с таким "перекосом" становится коррозионно активной и от нее страдает все вплоть до алюминия и нержавеющей :-) стали , т.к. при этом отсутствует необходимый для образования защитной пленки кислород и присутствует сильная щелочь . На западных форумах по этому поводу ехидничают (а сколько времени потребуется на разрушение ,скажем, болта) , но помнить об этом не помешает . Тем , кто сомневается , могу порекомендовать чтение КиЯ №175 (стр.58) . Редакция так и не объяснила читателю происхождение его проблем , но прочитавшему материал S3 все и так должно быть ясно .


^ Наполнители для эпоксидной смолы

( По материалам фирм System Three  и Glen-L )

(ист - http://www.t22.nm.ru Автор перевода - Сергей Баркалов)


    Наполнителями называют добавки к приготовленной смоле , вносимые для увеличения ее объема , предотвращения подтеков и для окрашивания. Для этих целей могут служить самые разные материалы вплоть до песка и опилок. Однако опилки обладают неоднородностью , песок - большим весом , причем то и другое может содержать инородные включения. Поэтому промышленностью разработан ряд наполнителей с предсказуемыми свойствами с областью применения от мороженого до бетона.

Аэросил. Тиксотропная добавка . Добавляется для исключения подтеков смолы , особенно на вертикальных и наклонных поверхностях. Смесь аэросила со смолой может применяться как шпаклевочно - заполнительный материал высокой плотности . Может применяться вместе с другими наполнителями для придания смеси консистенции сметаны.

Микросфера. Микроскопические пустотелые наполненные газом шарики в форме мелкозернистого порошка. Обладает низким весом и плотностью. Делает смолу воздушной и повышает вязкость , образуя в больших объемах пенистый материал . Идеальна для шпаклевочных составов , замазок , для заполнения угловых стыков и при ламинировании , где требуются хорошие свойства заполнения швов. Главное ее достоинство в том , что отвержденная смола с такой добавкой хорошо шлифуется , и чем больше такой добавки , тем легче шлифование. Однако надо знать меру , поскольку при избыточном ее количестве смесь трудна в нанесении. Микросфера понижает прочность клеевого шва и не должна использоваться при создании конструктивных связей типа усовых соединений .

Волокно. Добавляются в смолу для повышения ее вязкости при склеивании. Смола с такой добавкой отлично заполняет зазоры , хорошо пропитывает поверхности и не создает обедненных клеем швов , особенно на торцевых поверхностях. Волокно бывает стеклянное рубленое , стеклянное молотое , синтетическое и хлопчатобумажное. Хлопок с целлюлозой обладают наименьшей прочностью , зато повышают тиксотропность и могут служить заменой микросфере для заполнения смолой швов.

^ Древесная мука. Применяется для повышения густоты шпаклевок , замазок или клеев при натуральной отделке древесины. Смола с такой добавкой по консистенции мало похожа на сметану и с ней не так легко работать .

^ Графитовый порошок . Применяется в качестве пигментирующей добавки и для создания скользящих наружных поверхностей гоночных судов . Это мелкозернистый порошок черного цвета , который добавляют в приготовленную смолу для покрытия днища , рулей и швертов . Не используется на солнце . Покрытое таким способом днище не обладает "необрастающими" свойствами , зато имеет жесткую ударопрочную поверхность. Графит является проводником электрического тока и в соленой воде может вызывать электролитические проблемы.

^ Алюминиевая пудра и двуокись титана. Обычно служат в качестве пигментов . Добавление алюминия в смолу дает при покрытии поверхность серого цвета . При добавлении больших количеств улучшает обрабатываемость смолы . Двуокись титана придает смоле белый цвет и может применяться в местах , где нужен светлый цвет типа трюмных участков. Применение пигментов в смоле не заменяет ее покраски при эксплуатации на солнце. Полезно добавить двуокись титана в смолу при нанесении последнего покрытия при оклейке стеклотканью для подготовки под покраску.

Тальк. Также может служить наполнителем. Проведение большого количества экспериментов с тальком в широком спектре ситуаций показало , что он по свойствам близок к аэросилу и микросфере с одинаковой первоначальной прочностью клеевого шва. Однако под вопросом осталась способность талька поглощать влагу и при определенных обстоятельствах это может иметь неясные последствия. По этой причине часто придерживаются консервативной практики и избегают его применения.

Выводы :

Тиксотропными свойствами обладают аэросил , синтетическое волокно и древесная мука.

Повышают объем смеси фенольные микрошарики , кварцевые микросферы и древесная мука. Хотя все эти добавки делают смолу густой , только древесная мука придает ей тиксотропность. Попытка приготовить нерастекающуюся шпаклевку на микросфере приведет к приготовлению смеси , которую невозможно размазать. Их надо применять только в паре с тиксотропными добавками. Лучше всего для этого подходит аэросил , т.к. такая смесь лучше всего наносится.

Волокнистые материалы (рубленое/молотое/синтетическое/хб волокно) повышают прочность материала на разрыв и могут применяться для создания несущих конструктивную нагрузку стыков. Перечислены в порядке убывания прочности.


  1   2   3   4   5   6




Похожие:

Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconИз книги Р. Арона «Мнимый марксизм»
Поэтому они не делают историю и довольствуются тем, что комментируют ее. Марксисты принадлежат к другому семейству. Они соизмеряют...
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconЛюдм. Духанина тусовка ранним вечером молодежная новелла в 2-х действиях
Ксения с ума сойти можно. Потом мы начинаем канючить, что у нас нет денег на поступление. Все надо добиваться своими силами
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconПак Наталья Николаевна. Учитель математики высшей категории лицея №179
И всё чаще и больше учителя используют на уроках новые информационные технологии. Это и обучающие компьютерные программы, и презентации,...
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconЗаявка на получение одного бесплатного выпуска «Обзора страхового рынка», «Публикаций о страховании», «Публикаций о медстраховании»

Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconУчет транспортных расходов
Доставка может быть осуществлена с помощью сторонней организации или своими силами. В любом случае все начинается с того, что продавец...
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconШкольная олимпиада по физике
Автомобиль, движущийся со скоростью 72 км/ч, сталкивается с препятствием и в течении 0,04с останавливается. Во сколько раз средняя...
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconДокументы
1. /об использовании интернета/ПРИЛ 1 общест. совет.doc
2. /об...

Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconЗрилова Т. М. 219-920-944 Тестовые работы по математике для учащихся 4-го класса, обучающихся по системе развивающего обучения
Автомобиль за 6 час проехал 480 км. Какое расстояние мог бы проехать автомобиль за это же время, если бы увеличил скорость на 12...
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление iconСлово к читателю
Но, как гово­рится в пословице: «Один в поле не воин», поэтому мы решили создать эту газету, чтобы делиться своими мнениями по этим...
Изготовление аэрообвеса на автомобиль своими силами Компиляция статей и публикаций интернета Вступление icon24 августа день полезного интернета
В этом году, уже по традиции, портал "Сеть творческих учителей" приглашает всех на "День пи" День Полезного Интернета
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов