Дифференциальные уравнения icon

Дифференциальные уравнения



НазваниеДифференциальные уравнения
Дата конвертации30.06.2012
Размер45.37 Kb.
ТипДокументы
1. /Дифференциальные уравнения.docДифференциальные уравнения

Дифференциальные уравнения


Основные понятия определения.

Дифференциальное уравнение называется соотношение вида



связывающее независимую переменную х, ее ф-цию у, а также производные этой функции до н-го порядка включительно. если в уравнении 1 входит одна независимая переменная, то такое диф. ур. называется обыкновенным, если в уравнение 1 входит несколько независимых переменных, то такое диф. ур. называется уравнение в частных производных. Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.

Решением уравнения 1 называется н-раз дифференцированная функция y=f(x), которая при подстановке в уравнение 1 обращает его в тождество. В простейшем случае определение функции y=f(x) сводится к вычислению интеграла, а поэтому процесс нахождения решения диф. уравн. называется его интегрированием, а график ф-ции y=f(x) называется интегральной кривой диф. уравн. Т.к. при интегрировании функции получается множество решений, отличающихся друг от друга постоянным коэффициентом, то любое диф. уравн. также будет иметь множество решений, графически определяемых семейством интегральных кривых. Общим решением (общим интегралом) диф. уравн. н-го порядка называется его решение явно (неявно) выраженное относительно ф-ции у и содержащей н-независимых производных постоянных.



Независимость констант СI означает, что ни одна из них не может быть выражена через остальные, а следовательно число этих констант не может быть уменьшено на единицу.

Частным решением интеграла диф. уравн. н-го понрядка называется такое его решение, в котором произвольным константам Сi присвоены конкретные значения. это конкретные значения находятся из решения системы так называемых начальных условий



В этой системе правые части равенства представляют собой некоторые константы.

Диф. уравн н-го порядка


Диф. уравн. 1-го порядка имеет вид.



Если уравн. 1 разрешить относительно производной y’, то получают дифференциальное уравнение первого порядка разрешенное относительно y’



Диф. уравн. 2 можно представить в так называемой диф. форме

gif" name="object6" align=absmiddle width=220 height=19>

P и Q многочлены зависящие от х и у дифференциальное уравнение описываемое соотношением 1,2,3 в частом случае могут не зависеть от независимой переменной х или ее ф-ции у, но обязательно включают производную y’.


Диф. уравн. с разделяющимися переменными

Диф. ур с раздел переменными называются уравнения вида



Где f1 (х) и f2 (х) зависят только от х, и 1 (у) и 2 (у), разделим обе части уравнения (1) на 1 (у) и f1 (х) получим

(3)

Уравнения (3) и (3) называются общими интегралами исходного диф. уравнения.


ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.

Определение 1. Ф-ция (x,y) наз-ся однородной функцией н-го порядка относительно переменных x и y, если для любого t, отличного от нуля справедливо тождество (tx; ty)=t^n (x;y)

ОДНОРОДНАЯ ФУНКЦИЯ НУЛЕВОГО ПОРЯДКА.

Отношение двух однородных функций одинакового порядка есть однородная функция нулевого порядка.

Определение 2. Диф. уравнение P(x;y)dx + Q(x;y)dy=0 (1) является однородным уравнением , если функции P(x;y) и Q(x;y) являются однородными функциями одного и того же порядка.

Разрешим уравнение (1) относительно производной

dy/dx=-P(x;y)/Q(x;y)

Производная является однородной функцией нулевого порядка.

Определение 3. Диф. уравнение у=(x;y) (2) наз-ся однородным, если его правая часть (x;y) является однородной функцией нулевого порядка относительно своих аргументов.

Однородное диф. уравнение приводится к диф. уравнениям с разделяющимися переменными подстановкой t=y/x ; y=t*x

При такой подстановке правая часть уравнения (2) (tx;ty) = (1/x*x;1/x*y)= (1;y/x) = (y/x) =(t)

t=1/x

y/x=t

следовательно однородную функцию (x;y) можно представить как функцию  от аргумента t=y/x

y= t*x+t

t*x+t=(t)

dt/dx*x=(t)-t

dt/((t)-t)=dx/x

 dt/((t)-t)= dx/x + c

общее решение уравнения 2.

ДИФ. УРАВНЕНИЕ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ.

Д.У. P(x;y)dx + Q(x;y)dy=0 (1)

наз-ся уравнением в полных дифференциалах если левая часть этого уравнения представляет собой полный дифференциал некоторой функции U(x;y)/

Необходимым и достаточным условием, того ,что уравнение (1) будет уравнением в полных дифференциалах, выполнение равенства

dP/dy=dQ/dx

Действительно, если левая часть равенства (1) есть полный диф. функции U(x;y) ,то dU(x;y)=P(x;y)+Q(x;y)dy

dU(x;y)= dU/dx*dx + dU/dy*dy (3)

dU(x;y)= P(x;y)dx+Q(x;y)dy (4)

Сравнивая рав. 3 и 4

dU/dx=P(x;y) (5)

dU/dy=Q(x;y) (6)

dP/dy=d^2U/dxdy

dQ/dx=d^2U/dydx

Т.к для диф. ф-ции U(x;y) частная произв. 2-го порядка не зависят от порядка диф., то мы приходим к равенству (2). С учётом равенства(30 равенство (1) может быть зависимо как

dU(x;y)=0 (7)

U(x;y)=c (8)

Это и есть общее решение нашего д.у.

Для отыскания ф-ции U воспользуемся ф-лой (5)

dU=P(x;y)dx

U= (x;y)dx+C=P(x;y)dx + (y) (9)

Для отыскания ф-ции (y) продифференцируем равенство (9) по переменной y

dU/dy=d/dyp(x;y)dx+(y)

(y)=Q(x;y)- d/dyp(x;y)dx (10)

Проинтегрировав левую и правую часть рав. (10) мы получим значение ф-ции (y):

(y)=(Q(x;y)-d/dy*P(x;y)dx)dy=C (11)

Подставим равенство (11) в (9)

P(x;y)dx=(Q(x;y)-d/dy*P(x;y)dx)dy +C=C

P(x;y)dx+(Q(x;y)-d/dy*P(x;y)dx)dy=C (12)

C=C-C получаем общее решение диф. уравнения.

Замечание.

  1. В ф-ле (12) знаки частной производной и дифференциала можно поменять местами.

  2. Ф-цию U можно было определить из равенства(6)




Похожие:

Дифференциальные уравнения iconДифференциальные уравнения

Дифференциальные уравнения iconДокументы
1. /Дифференциальные уравнения.doc
Дифференциальные уравнения iconДокументы
1. /Арнольд В.И. Обыкновенные дифференциальные уравнения.djvu
Дифференциальные уравнения iconНеобратимость и запаздывающие потенциалы*
Изучим теперь более подробно гипотезу, связывающую дифференциальные уравнения (IX) и (X) с формулами запаздывающих потенциалов (XII)...
Дифференциальные уравнения iconПо темам: Квадратные уравнения. Квадратичная функция
Какие из чисел:, -15, -5,, 0,, 5, 52 являются корнями уравнения (52– Х)(5х + 1) = 0 ?
Дифференциальные уравнения iconКонтрольная работа №4 «Тригонометрические уравнения» 1 вариант Решите уравнения

Дифференциальные уравнения iconИсходные уравнения Выполненные преобразования Полученные уравнения

Дифференциальные уравнения iconДокументы
1. /algor/3D-2D.txt
2. /algor/3D.doc
Дифференциальные уравнения icon«Квадратные уравнения»,вывести и доказать формулы корней квадратного уравнения, сформулировать умения применять формулы в решении задач

Дифференциальные уравнения iconТема "Квадратные уравнения "
Цель урока: систематизировать и обобщить знания учащихся по теме "Квадратные уравнения"
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов